Ограничитель импульсных перенапряжений и схема установки разрядника. Устройство защиты от импульсных перенапряжений: применение и схема монтажа Схема подключения оин в трехфазной сети

Оборудование > Модульные устройства

Ограничители импульсных перенапряжений

На современных объектах индивидуального строительства (коттеджи, дачные дома и т. д.) требуется применение повышенных мер электробезопасности. Это связано с высокой энергонасыщенностью, разветвленностью электрических сетей и спецификой эксплуатации как самих объектов, так и электрооборудования. При выборе схемы электроснабжения , типа УЗО и распределительных щитков следует обратить внимание на необходимость использования устройств защиты от импульсных перенапряжений (УЗИП ), которые следует устанавливать до УЗО.
Ограничители импульсных перенапряжений (УЗИП) предназначены для защиты внутренних распределительных цепей жилых и общественных зданий от грозовых и коммутационных перенапряжений.
Конструктивно ограничители выполнены в виде стандартных модулей шириной 18 мм для установки на монтажную рейку и состоят из основания - контактной колодки и сменного функционального модуля. Сменный модуль содержит твердотельный композитный варистор из карбида цинка и механизм визуального контроля степени "износа" варистора с "аварийным" предохранителем.
Карбид цинка обладает свойством практически мгновенно снижать свое сопротивление в тысячи раз при появлении на выводах сменного модуля напряжения, превышающего предельно допустимую величину.

Проверка исправности ограничителя

Проверку исправности ограничителя в процессе эксплуатации производить следующим образом:
- по визуальному индикатору проверяют степень "износа" (если индикатор затемнен более, чем на 3/4, то его необходимо заменить);
- отсоединить ограничитель от питающей сети и подсоединить к мегомметру напряжением 1000 В;
- замерить сопротивление ограничителя, которое должно лежать в диапазоне 0,1...2 мОм. Если сопротивление ограничителя находится вне указанного диапазона, ограничитель должен быть заменен.

Техническая характеристика

Параметр

0ПС1 В (I )

0ПС1 С (II)

0ПС1 D (III)

Номинальное рабочее напряжение, В

Максимальное рабочее напряжение, В

Номинальный разрядный ток 8/20 мкс, кА

Максимальный разрядный ток 8/20 мкс, кА

Уровень напряжения защиты, не более, кВ

Классификационное напряжение, В

Количество полюсов

1, 2, 3, 4

1, 2, 3, 4

1, 2

Условия эксплуатации

УХЛ4

УХЛ4

УХЛ4

Сечение присоединяемых проводов, мм кв.

4...25

4...25

4...25

Габаритные размеры

Электрические схемы

Источники импульсных перенапряжений

В летний период грозовой разряд в воздушную линию вызывает появление перенапряжений в десятки киловольт, носящих характер бегущих волн с большой крутизной и временем возрастания от нуля до максимума 1,0...8,0 мкс. Попав во внутреннюю распределительную сеть здания разряд может вызвать пробой, возгорание изоляции и выход из строя электрооборудования. Аналогичные последствия могут вызвать коммутационные перенапряжения, возникающие при переключениях на подстанциях или при пуске и отключении мощных электропотребителей.
С помощью ОПС1 можно создать весьма эффективную и долговременную защиту объекта. Одним из основных условий при этом является наличие контура заземления, а для производственных помещений - и системы выравнивания потенциалов; ведь, несмотря на малую длительность, грозовой разряд несет значительную энергию. Максимальное пиковое значение тока разряда может достигать 100 кА, и при отсутствии выравнивания потенциалов вполне возможно возникновение опасного шагового напряжения. Трехступенчатая система защиты внутри здания позволяет плавно понижать опасный импульс перенапряжения "по ходу" в сторону потребителя до безопасной величины путем отбора и "слива" в землю части энергии быстродействующими разрядниками каждой ступени. При установке разрядников следует учесть, что последовательная (селективная) работа ступеней защиты будет обеспечена, если расстояние между ступенями по воздушной и кабельной цепям составляет не менее 7...10 м. В этом случае, при появлении бегущей волны разряда, индуктивность участка цепи будет создавать необходимую постоянную времени задержки нарастания напряжения.
Расстояние от разрядников, установленных в абонентском щите потребителя, до самой удаленной нагрузки не должно превышать 30 м.
Подключение к фазным и нулевой шинам во всех трех ступенях производят до коммутационной аппаратуры и аппаратуры защитного отключения. Длина проводников, соединяющих разрядники с PEN или РЕ проводником должна быть минимальной, а их сечение не менее 25 мм2.

Классификация электрооборудования по стойкости к перенапряжениям

Характеристика

Номинальное импульсное выдерживаемое напряжение, кВ

Специальное оборудование, которое, будучи присоединено к существующим электроустановкам зданий, нуждается в дополнительных устройствах защиты от импульсных перенапряжений. УЗИП могут быть встроены в оборудование категории 1 или расположены между этим оборудованием и остальной частью электроустановки (например, персональные компьютеры, которые подключены к питающей сети через удлинители со встроенными УЗИП).

Оборудование, которое присоединяют к существующим электроустановкам зданий посредством штепсельных розеток и других аналогичных соединителей (например, бытовые электроприборы, радиоэлектронные приборы, переносной инструмент).

Оборудование, установленное внутри зданий, которое составляет часть конкретной электроустановки здания и доступно для обычных лиц и необученного персонала. Примеры такого оборудования - распределительные щитки, проводка, выключатели и розетки, электроплиты.

Оборудование, установленное вблизи от электроустановок зданий (внутри или снаружи) перед главным распределительным щитом, которым может быть вводно-распределительное устройство для многоэтажных зданий или квартирный щиток для индивидуальных зданий (например, электрические счетчики, первичные аппараты защиты от сверхтоков).

Области применения 0ПС1 в соответствии с классификационным напряжением

Класс 0ПС1

Назначение и место установки 0ПС1

I (B)

Первая ступень защиты от прямых или косвенных грозовых разрядов в ЛЭП на вводе в объект. Устанавливают на вводе в здание во вводно-распределительном устройстве (ВРУ) или в главном распределительном щите (ГРЩ)

II (C)

Вторая ступень защиты внутренних распределительных цепей объекта от грозовых разрядов и коммутационных перенапряжений. Устанавливают в распределительные щиты.

III (D)

Третья ступень защиты электрооборудования объекта от остаточных грозовых и коммутационных перенапряжений. Устанавливают в непосредственной близости электропотребителей (электроприборов).

Установка УЗИП в сети TN-C-S 220/380 В

Для того, чтобы надежно защитить объект от воздействия любого вида перенапряжений, в первую очередь необходимо создать эффективную систему заземления и выравнивания потенциалов с системой электропитания TN-S или TN-C-S. Это важно не только с точки зрения защиты от импульсных перенапряжений, но и для защиты людей от поражения электрическим током (возможно применение УЗО). Следующим шагом должна стать установка защитных устройств. При установке защитных устройств необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания.

Выполнение этого требования очень важно для правильной работы (координации срабатывания) защитных устройств. В момент возникновения в силовом кабеле импульсного грозового перенапряжения за счет увеличения индуктивного сопротивления металлических жил кабеля при протекании по ним импульса тока на них возникает падение напряжения, которое оказывается приложенным к первому каскаду защиты. Таким образом достигается его первоочередное срабатывание (обеспечивается необходимая временная задержка в нарастании импульса перенапряжения на следующей ступени защиты).

Вольт-амперная характеристика

Особенностью вольт-амперной характеристики варистора является наличие участка малых токов (от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов (до тысяч ампер), который в ряде случаев называют туннельным.
Туннельный участок во многом определяет функциональные свойства и, в частности, напряжение ограничения, т.е. максимальное импульсное напряжение, воздействующее на защищаемое электрооборудование при шунтировании его варистором. Одной из характеристик варистора является классификационное напряжение (Uкл). В качестве классификационного указано напряжение при токе 1,5 мА.

Даже представить страшно загородную собственность без электроприборов. Пусть и в ночном кошмаре не снятся лучина или коромысло с корытом. Да здравствуют стиральные машины, насосы, светильники, водонагреватели и еще масса полезных изобретений, участвующих в формировании цивилизованных условий! Однако для стабильной работы оборудования оды слагать недостаточно. Нужно позаботиться о том, чтобы трудолюбивые «железные помощники» получали питание требующихся им параметров, а способ доставки энергии был надежным и предельно безопасным. Вот для этого и нужен ограничитель перенапряжения – компактный потомок устаревших разрядников.

Служебные обязанности старых и новых разрядников

Теплую симпатию Тютчева к майским грозам вряд ли смогут разделить владельцы электрооборудования. Угодивший в воздушную электролинию меткий грозовой разряд создаст в ней перенапряжение, значение которого достигает порой десятков кВ. Даже если дело не дойдет до десятков, а обойдется единицами, приборам может быть нанесен серьезный ущерб. Ведь преобладающее количество бытовых агрегатов с электронной начинкой устойчиво лишь к 1,5 кВ.

Молниеносно разбегаясь по проводке крутые волны перенапряжения способны вызвать пробой, могут перегреть изоляцию до стадии возгорания. И вовсе необязательно, чтобы разрушительная грозовая «стрела» попала в сеть рядом со строением. За пару микросекунд она преодолевает километровые расстояния. От предсказуемых последствий жильцов многоэтажек обязаны защитить электрики управляющей организации. А вот частники смогут предъявить претензии только Илье Громовержцу.

Это не единственная причина, с целью исключения которой нужна защита от перенапряжения. Аналогичную угрозу представляют:

  • коммутационные скачки, возникающие на подстанции вследствие отключающих/подключающих манипуляций с мощными потребителями;
  • броски перенапряжения, распространяемые другим оборудованием;
  • электростатические разряды, которые периодически появляются между работающими рядом устройствами.

Для того чтобы все перечисленные обстоятельства не влияли ни на работу электротехники, ни на целостность ее изоляции, были изобретены разрядники.

Функция разрядников заключалась в поглощении излишков энергии с последующим сбросом их вместе с выделившимся теплом в почву через . В списке компонентов разрядника значатся только два электрода и дугогасительный элемент. Один из электродов крепился к защищаемому объекту, второй к заземляющему контуру. Т.е. одной «рукой» разрядник ловил перенапряжение, второй – выводил его за пределы. Дугогаситель снимал возникшую в это время ионизацию, чтобы вернуть разрядник в обычное рабочее русло.

Между электродами разрядника нужно было установить четкое расстояние, именуемое искровым промежутком. Чем больше был данный интервал, тем мощнее действовала разрядная система. В результате сооружалось нечто весьма громоздкое и не всегда эффективное, потому что устройство могло внезапно ограничить поток, не успев вернуться в нормальный рабочий режим перед очередным всплеском. Потом были эпопеи с внедрением вентильных, воздушных, газовых и других типов разрядников. Каждый из них мог похвастаться технологическими плюсами, но не был полностью избавлен от недостатков.

Меньше всего технологических минусов у нового поколения разрядников – ограничителей. Ранее они были представлены блокированными устройствами, которые после повреждения приходилось полностью менять. Теперь их выпускают в модульных вариантах, невероятно удобных для защиты электропроводки загородной частной собственности.

Конструкция и специфика модульных ограничителей

Ограничители, применяемые для гашения импульсного перенапряжения, представляют собой компактные аппараты со сменными модульными элементами. Устанавливают приборы в главных и второстепенных распределительных щитках.

Обратите внимание. Использование ограничителей будет иметь смысл только при наличии системы заземления, которая требуется для вывода тепловой энергии от погашенной электромагнитной дуги.

Главный рабочий орган ограничителя – варистор. Это реостат, набранный из плотно состыкованных варисторных таблеток. Делают таблетки из смеси оксида цинка с оксидами висмута, кобальта и других металлов. Преимущество данного органа заключается в нелинейном вольт-амперном «поведении». Т.е. сопротивление устройства уменьшается с увеличением силы тока, благодаря чему:

  • прибор свободно пропускает сверхтоки и компактно гасит их без длиннющего искрового промежутка;
  • срабатывает в предельно краткий срок;
  • почти моментально возвращается к исходному изоляционному состоянию в полной готовности «принять на грудь» очередной импульсный поток.

Варистор расположен в модульной вставке, которую после выхода из строя функциональной начинки можно без мельчайших проблем заменить. Модульные устройства выпускают в широком диапазоне пропускной токовой способности, т.к. ограничители призваны осуществлятьзащиту от разных по мощности скачков напряжения.

Обратите внимание, что в случае применения комплектных ограничителей от одного производителя (например, с маркой ETITEC) допустима их параллельная установка, если требуется увеличить токовую способность. Однако желательно изначально подбирать аппарат с требующимися характеристиками.

Ограничитель в сеть устанавливается навечно. Точнее, на весь срок службы защищаемого им участка проводки. Периодически менять нужно будет лишь сменную вставку, габариты которой рассчитаны на возможность подключения только к прибору с конкретной пропускной токовой способностью. Короче, вставка с иными токовыми характеристиками банально не влезет в «гнездо».

Работа и сигнализация о повреждении

Пока по токоведущим жилам проводки течет ток стандартного рабочего значения, варисторный ограничитель безоговорочно пропускает поток. Напряжение на клеммах его главного рабочего органа равнозначно напряжению в сети. Как только клеммы прибора зафиксируют аномалию, аппарат в считанные наносекунды приступает к обязанностям. А если возникнет напряжение, равное по значению напряжению воспламенения прибора, работу ограничителя прервет термический предохранитель.

По задумке разработчиков «жизненный цикл» ограничителей равен 200 тысячам часов. Однако сократить его могут всплески перенапряжения, значение которых ощутимо превышает номинальные величины. Они способны повредить варисторный орган и сжечь предохранитель, в результате чего устройствопросто вообще не сможет осуществлять защиту от перенапряжения. Естественно, «на ощупь» получить информацию о выходе прибора из строя невозможно. Для этого в сменном модуле заботливые производители предусмотрели сигнальный элемент – контрольное окошко.

Визуальная сигнализация зависит от предпочтений изготовителя. Это может быть затемнение контрольного окна или обнаруженный там же яркий красный свет, как у продукции ETITEC. Кстати в ассортименте упомянутой фирмы есть ограничители со звуковым оповещением. В инструкциях обычно подробно описано, по каким признакам нужно определять предстоящую замену вкладыша.

Обратите внимание, что модульность ограничителей в приоритете не только из-за оперативной замены поврежденного элемента, но и из-за возможности получить верные показания при контрольном измерении сопротивления проводки. Достаточно удалить вкладыши из модульных ограничителей, и на исследуемые значения ничто не будет влиять. С блокированными аппаратами измерения проводить бесполезно, достоверных результатов не будет.

Классификация ограничителей и правила монтажа

Защиту объекта от импульсных напастей сооружают по традиционным правилам селективности. Т.е. на вводе устанавливают наиболее мощный прибор, затем ограничитель с меньшей пропускной токовой способностью, далее – еще меньше и т.д. Для загородных строений вполне приемлем двухступенчатый формат защиты, тратиться на более изощренный вариант не к чему.

Чтобы не купить ограничитель с абсолютно ненужными характеристиками, выясним, по каким принципам классифицирует свой товар глубокоуважаемая нами компания ETITEC:

  • Группа А - ограничители, предназначенные для защиты объекта от сверхтоков, вызванных прямым попаданием грозового разряда в сеть или попаданием в объект, расположенный поблизости от воздушной ЛЭП. Без потери работоспособности они смогут вывести в землю импульсы не более 6кВ. Рабочее сопротивление данных устройств не превышает 10 Ом. Устанавливаются снаружи, чаще всего крепятся в точке перехода воздушной линии в кабельное продолжение. Рекомендовано располагать в зоне заземления нулевого защитного проводника PE или его собрата PEN, по совместительству выполняющего функции нулевого защитного и нулевого рабочего проводников.
  • Группа В – ограничители, защищающие от импульсных всплесков в пределах 4 кВ. Устанавливаются они на вводе в строение, если наружное ограничивающее устройство уже есть. Эта группа чаще всего используются в качестве первой ступени защиты частного дома, т.к. предполагается, что предыдущий вариант обязана поставить обслуживающая ЛЭП компания.
  • Группа С – ограничители, сбрасывающие в заземление все, что пропустила защита В, но не более 2,5 кВ. Причем и применяются они преимущественно в паре, особенно, если сооружается двухступенчатая система. Если в двух ступенях ограничения не было необходимости, то приборы группы С справляются с задачами первой защитной преграды. Монтируются в местах распределения электропроводки, в щитках.
  • Группа D – ограничители, предназначенные для защиты потребителей, особо чувствительных к коротким сверхтокам. Оберегают они оборудование, чья устойчивость изоляции не превышает 1,5 кВ. Обойтись без них можно, если нет техники с электронной начинкой. Однако если между устройством С и защищаемым оборудованием больше 15 м, D очень даже пригодится. Установка в сеть ограничителей D допустима только при наличии более высоких степеней защиты. Чувствительные устройства без затруднений выведет из строя малейшее импульсное колебание.

Согласно описанному ранжиру производится селективная установка ограничителей. В преобладающем количестве случаев используется схема B – C, отлично справляющаяся с гашением и отводом наружу электромагнитного негатива в диапазоне 1,5- 2,5 кВ. Если имеются причины для увеличения количества ступеней, то можно начать сооружение защиты с прибора группы А и завершить устройством D.

Обратите внимание. Между ограничителями В и С марки ETITEC расстояние должно быть 10м и более, чтобы на подступах ко второй ступени защиты перенапряжение успело достичь порогового значения. При отсутствии возможности расположить приборы согласно правилам, можно поставить рядом в щиток, но между аппаратами разместить индукционную катушку от того же производителя. Между С и D катушки не надо, но желательно создать между ними интервал в 5 м.

Жаль, что латинскими литерами обозначаются не все ограничители, но принцип классификации у всех производителей приблизительно одинаков. Аналогична схема установки и использования ограничителей, защищающих от скачков напряжения в электросети, равнозначны правила их подбора. Как ориентироваться без буквенных подсказок?

Ориентиры подбора ограничителей

Перед покупкой надо изучить технический паспорт аппарата, в котором указаны:

  • значение максимального рабочего напряжения, при котором устройство способно длительное время работать без отвода излишка энергии в систему заземления;
  • номинальное напряжение – характеристика, указывающая на то, какое перенапряжение при пуске оборудования может действовать на устройство целых 10 сек., не призывая его к «должностным» обязанностям;
  • величина номинального разрядного тока, согласно которой производится классификация, идентичная вышеуказанному варианту.
  • токовая пропускная способность, обозначающая предел снижения сопротивления ограничителя. Проще говоря, какой величины перенапряжение устройство сможет обрабатывать и сбрасывать без собственной поломки;
  • устойчивость к медленно возрастающему напряжению, которая означает способность устройства пропускать аномальный ток без разрушительных последствий;
  • предельный ток разряда, который может «обработать» устройство;
  • устойчивость к «коротышам», успевшим вывести прибор из строя, но не создавшим условий для взрыва оболочки…

В техпаспорте найдется еще ряд значений, полученных расчетным или экспериментальным путем. Изучать их в полном объеме необязательно, большинство пропечатанных параметров предназначено для рабочих испытаний и для настройки промышленных систем.

Резюмируем полученную информацию

Итак, уверенно направляемся в магазин с целью приобретения весьма полезных приборов защиты и учитываем что:

  • для обеспечения автономного строения, не имеющего наружной грозовой защиты, потребуется трехступенчатое сооружение А – В – С, действие которой будет последовательно ограничивать импульсные волны 6 – 4 – 2,5 кВ;
  • при расстоянии от ограничителя С (2,5 кВ) до приемника энергии больше 10ти метров нужен будет еще и прибор D (1,5кВ);
  • для объекта с существующей защитой от атмосферных и сетевых перенапряжений нужен только тандем В – С (4 - 2,5 кВ).

Хочется верить, что наши советы помогут грамотно выбрать приборы для защиты от всего спектра перенапряжений. А вот установку их желательно поручить «бывалым» электрикам. Без опыта лучше не браться за крайне ответственное дело.

Одними из устройств из серии «быть или не быть?»…ему в щите учета — являются ограничители импульсных перенапряжений ⚡⚡⚡ Они еще называются УЗИП, ОИН, ОПС-1 … и т.п. Существует их бесчисленное множество, бывают они различных классов, бывают разных производителей. Ставить или не ставить, схема подключения такого устройства все это мы затронем в данной статье!

Сначала я расскажу о тех ограничителях перенапряжений, которые я использую для установки в щиты учета моих заказчиков. Свой выбор я остановил на устройстве под названием ОИН-1 от концерна АО «Энергомера».

ОИН-1 вид сбоку

Основным критерием выбора данного ограничителя для меня являлось наличие на складе поставщика и цена, последний критерий имеет бОльшее значение, т.к. на мой взгляд необходимость установки таких изделий крайне мала, но об этом немного позднее. Для сравнения комплект ограничителей ОИН-1 АО «Энергомера» на три фазы стоит около 900 рублей, ближайший «конкурент» это ОПС-1 3Р D от ИЭК стоит в районе 3500. Функции выполняемые данными ограничителями абсолютно одинаковые, а если нет разницы зачем Вам платить больше?!

Что же касается схемы подключения УЗИП, ОИН, ОПС и прочих аналогичных устройств. В щите учета подключаются они с нижних клемм вводного автомата, а вывод и ограничителя идет на шину ГЗШ, в нашем случае это проходной блок.

Схема подключения ограничителя импульсных перенапряжений с нижних клемм вводного автомата с помощью наконечников НШВИ-2

В качестве ГЗШ в нашем щите учета идет проходной блок. Данный проходной блок повторно заземляется с помощью проводника заземления.

Так как ограничитель находится в схеме подключения до счетчика то он должен быть опломбирован. В нашем случае с помощью пластикового бокса.

Общий вид

Схема подключения ограничителей перенапряжения УЗИП,ОПС-1, ОИН и прочих идентична и для других производителей. Отличие возможно лишь в том, что если берете трехполюсный ограничитель то у него выводной проводник уже собран из трех в один.

По опыту работы могу сказать, что не во всех сетевых организациях в технических условиях для заявителей существует такое требование об установке импульсных ограничителей. Мне такое требование встречалось в Нижегородской области и в Краснодарском крае.

Давайте сначала затронем практическую часть вопроса . Чтобы понимать ставить или не ставить нужно понимать, что может быть источником такого перенапряжения, а их всего два:

1.удар молнии, как прямой так и в непосредственной близости

2.коммутационные перенапряжения.

Чтобы понимать ставить или нет ограничитель для защиты от импульсных(грозовых) перенапряжений нужно знать каким проводом выполнена магистраль, к которой наш щит учета будет подключен. Если магистраль выполнена голым проводом вероятность попадания молнии есть, если самонесущим изолированным (СИП), — вероятность попадания молнии крайне мала.Кроме того, нужно иметь ввиду в каком регионе у нас будет установка нашего щита учета. Ниже карта с числом грозовых часов в году:

Как мы видим на данной карте на севере страны очень маленькое число грозовых часов и ограничитель в нашем щите учета просто займет место и не будет выполнять полезных функций. Чем южнее, тем число грозовых часов в году больше и вероятность возникновения первого источника перенапряжения выше.

Что касается коммутационных перенапряжений. Данные перенапряжения возникают при оперативных переключениях на подстанциях. Чем мы ближе находимся от нашей подстанции, тем выше вероятность коммутационного перенапряжения.

Для себя я сделал выбор не в пользу установки ограничителей импульсных перенапряжений, так как моя магистральная линия выполнена проводом СИП, и участок находится на краю деревни где нет крупных подстанций и число грозовых часов в нашем регионе небольшое.

Как мы видим на общем виде щита учета, из-за установки ограничителя у нас не хватило места для установки розетки и автомата для розетки. Можно конечно купить корпус с бОльшими размерами, но опять же это будет стоить для нас дороже. И на мой взгляд розетка с автоматом в щите учета куда полезнее нежели ограничитель импульсных перенапряжений.

Давайте теперь рассмотрим юридическую сторону вопроса . Сразу хочется оговориться, что у меня нет юридического образования и это исключительно мои мысли, которые возникли изучая нормативные документы.

Действительно в ПУЭ есть пункт 7.1.22 где сказано что должны устанавливаться ограничители перенапряжения при воздушном вводе, но в пункте 7.1 сказано, что глава 7 распространяется на — » жилых зданий, перечисленных в СНиП 2.08.01-89 «Жилые здания» (этот СНИП распространяется на проектирование жилых зданий (квартирных домов, включая квартирные дома для престарелых и семей с инвалидами, передвигающимися на креслах-колясках, в дальнейшем тексте — семей с инвалидами, а также общежитий), высотой до 25 этажей включительно.); общественных зданий, перечисленных в СНиП 2.08.02-89 «Общественные здания и сооружения» (за исключением зданий и помещений, перечисленных в гл. 7.2)(данный СНИП распространяется на проектирование общественных зданий (высотой до 16 этажей включ.) и сооружений, а также помещений общественного назначения, встроенных в жилые здания. При проектировании помещений общественного назначения, встроенных в жилые здания и встроенно-пристроенных к ним, следует дополнительно руководствоваться СНиП 31-01-2003.); административных и бытовых зданий, перечисленных в СНиП 2.09.04-87 «(данный СНИП распространяется на проектирование административных и бытовых зданий 1 высотой (по СНиП 21-01-97) до 50 м, включая мансардный этаж, и помещений предприятий.). Все эти СНИПы относятся к многоквартирным домам, административным зданиям, общественным и тп зданиям. Т.е. в пункте 7.1 не указано, что пункт 7.1.22 распространяет свое действие на индивидуальные жилые дома.

Кроме того, в соответствии с Постановлением Правительства РФ от 27.12.2004 N 861 (ред. от 28.07.2017)

25(1). В технических условиях для заявителей, предусмотренных пунктами 12.1 и 14(физ. лица до 15кВт, то есть наш случай) настоящих Правил, должны быть указаны:

а) точки присоединения, которые не могут располагаться далее 25 метров от границы участка, на котором располагаются (будут располагаться) присоединяемые объекты заявителя;

а(1)) максимальная мощность в соответствии с заявкой и ее распределение по каждой точке присоединения к объектам электросетевого хозяйства;

(пп. «а(1)» введен Постановлением Правительства РФ от 04.05.2012 N 442)

б) обоснованные требования к усилению существующей электрической сети в связи с присоединением новых мощностей (строительство новых линий электропередачи, подстанций, увеличение сечения проводов и кабелей, замена или увеличение мощности трансформаторов, расширение распределительных устройств, модернизация оборудования, реконструкция объектов электросетевого хозяйства, установка устройств регулирования напряжения для обеспечения надежности и качества электрической энергии), обязательные для исполнения сетевой организацией за счет ее средств;

в) требования к приборам учета электрической энергии (мощности), устройствам релейной защиты и устройствам, обеспечивающим контроль величины максимальной мощности;

г) распределение обязанностей между сторонами по исполнению технических условий (мероприятия по технологическому присоединению в пределах границ участка, на котором расположены энергопринимающие устройства заявителя, осуществляются заявителем, а мероприятия по технологическому присоединению до границы участка, на котором расположены энергопринимающие устройства заявителя, включая урегулирование отношений с иными лицами, осуществляются сетевой организацией).

(пп. «г» в ред. Постановления Правительства РФ от 24.09.2010 N 759)

(см. текст в предыдущей редакции).

Т.е. в технических условиях заявителей не должно быть требований к устройствам ограничивающим импульсные перенапряжения. Возможно если только притянуть «их за уши» как «устройства релейной защиты» коими такие устройства не являются.

Теперь мы с Вами знаем, как практические вопросы установки ограничителей так и юридические. Выбор всегда за Вами! Для себя я этот выбор уже сделал!

Не забывайте заходить на YOUTUBE и ставить палец вверх у видео про УЗИП,ОИН,ОПС.

Купить надежный щит учета очень просто — достаточно всего лишь отправить заявку по удобным для Вас каналам связи!

Правильное размещение ограничителей перенапряжений в линии электропитания имеет принципиальное значение для корректной работы спроектированной системы защиты от перенапряжений.

Как уже отмечалось ранее, при организации систем защиты от перенапряжений силового электроэнергетического оборудования ограничители монтируются в следующих местах:

  1. снаружи строительного объекта, в зоне молниезащиты 0B, на входе питающих кабелей к устройствам (чаще это ограничители классов II, иногда класса I);
  2. в месте перехода силовых кабелей через стену здания (в зависимости от уровня угрозы это ограничители класса I или II) - в кабельном соединении, заземленным кратчайшим путем к заземляющему устройству;
  3. внутри строительного объекта:
    • в локальных распределительных щитах (в зависимости от уровня угрозы это ограничители классов II или III);
    • поблизости от защищаемых устройств (чаще это ограничители класса III, иногда - класса II, с точки зрения слишком малого номинального тока ограничителей класса III, составляющего чаще всего 16 A).

Необходимо здесь подчеркнуть, что из всех мест расположения ограничителей перенапряжений, предложенных в разделе 443 нормы IEC 60364-4, единственно правильным является расположение в кабельном соединениии при условии, что соединение находится в стене защищаемого здания.

Размещение ограничителей в воздушной линии:

В случае размещения ограничителей в воздушной линии, нельзя забывать о возможности проникновения ударов перенапряжений к силовому кабелю на трассе "столб воздушной линии - здание", что делает это размещение бесполезным.

Размещение ограничителей внутри здания:

1.6. Стойкость ограничителей к короткому замыканию

Ограничители перенапряжений следует защищать от последствий тока короткого замыкания. Из его схемы включения (парралельное включение относительно зажимов защищаемой цепи) следует, что любое действие ограничителя перенапряжений вызывает в последствии протекание тока короткого замыкания в защищаемой линии. По этой причине производитель должен заявить, когда и какой предохранитель следует использовать последовательно с ограничителем, чтобы гарантировать соответствующую стойкость к току короткого замыкания схемы предохранитель - ограничитель перенапряжений.

Определяя потребность использования дополнительной защиты ограничителя переанпряжений включенным последовательно предохранителем, следует сравнить значения номинальных токов I F1 фазных предохранителей защищаемой цепи с допустимым значением тока I DOP , который может протекать в цепи ограничителя перенапряжений (рекомендованный производителем). В зависимости от результатов такого сравнения, следует использовать схему:

  • I F1 ≤ I DOP - без дополнительного защитного предохранителя (рис.1.3.a),
  • I F1 > I DOP - содержащую дополнительный предохранитель F2, включенный последовательно с ограничителями перенапряжений (рис.1.3.b).

Полная версия статьи доступна только зарегистрированным пользователям!

Получите доступ ко всем материалам на сайте совершенно бесплатно!

1.7. Схемы подключения ограничителей перенапряжения

В зависимости от системы заземления сети электроснабжения, используется один из видов соединения ограничителей перенапряжений, представленных на рис. 1.4, 1.5 или 1.6.

В системе сети TT существует возможность применения 4 типовых ограничителей перенапряжений или так называемой системы 3+1 (3 ограничителя перенапряжений + 1 ограничитель N-PE). Такие системы соединений касаются ограничителей классов I и II.

В случае применения ограничителей класса I, необходимо использовать системы с дополнительными предохранителями, соединенными последовательно с ограничителями. Применение предохранителей не обязательно, если выполняются соответствующие условия, описанные в разделе 1.6.


Полная версия статьи доступна только зарегистрированным пользователям!

Получите доступ ко всем материалам на сайте совершенно бесплатно!

Ограничитель перенапряжений это часто недооцениваемый, но очень важный элемент . Этот элемент рекомендован к установке производителями электрооборудования, в то время как среди самих электриков мнения разделены. Давайте разберёмся с этим делом. Наиболее частые вопросы про ограничитель выглядит следующим образом: Каковы классы разрядников? Из чего он состоит и как работает? Как подключить ограничитель перенапряжений? Действительно ли он защищает электрические устройства?

Классы защиты ограничителей

В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.

  1. Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
  2. Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
  3. Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
  4. Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.

Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу — тем более высокая мощность. Например:

  • Класс A уменьшит уровень напряжения до 6 кВ,
  • Класс B уменьшит уровень напряжения до 2,5 кВ,
  • Класс C уменьшит уровень напряжения до 1,5 кВ,
  • Класс D уменьшит уровень напряжения до 0,8 кВ.

Поэтому ограничители отдельных классов следует применять каскадно, постепенно снижая уровень предельного напряжения. То есть если одно распределительное устройство в доме — используем защитные устройства класса как B, так и C (есть сразу 2 в 1 защитные устройства B + C).

Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.

Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.

Поскольку рассматривать будем домашнюю проводку, статья будет посвящена защитным устройствам класса B и класса C (типа I и II).

Обозначение на принципиальных схемах

Основные символы, используемые при обозначении разрядников перенапряжения, следующие:

  1. Общее обозначение разрядника
  2. Разрядник трубчатый
  3. Разрядник вентильный и магнитовентильный

Установка ограничителя перенапряжений

Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:

  1. Основа ограничителя
  2. Сменная вставка с защитным элементом

Основа

Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы (L) или нейтральный (N) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.

Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.

Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.

Вставка

Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:

  • Класс B (тип I) — основным элементом является просто искровой промежуток.
  • Класс C (тип II) — здесь деталь варистор является основным элементом.

Как работает защитник от перенапряжений

Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).

Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.

Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.

Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.

В защитных устройствах класса B основным элементом является искровой промежуток . При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.

Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.

Ограничитель класса C имеет внутри варистор . Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.

Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.

Главным в ограничителях перенапряжений, независимо от используемого класса, является установка заземления с очень хорошими параметрами, то есть с очень низким электрическим сопротивлением. Если это сопротивление слишком велико — ток перенапряжения (вызванный ударом молнии) вместо протектора может протекать через электрическую систему и оставить на пути сгоревшее оборудование, включенное в данный момент к розеткам 220 вольт.

Схема подключения ограничителя к сети

Как подключить ограничитель к домашнему щитку? Начнем с основ. У нас есть однофазная сеть и одномодульный разрядник. Мы хотим защитить им фазовый провод. Тип сети — TN-S.

Подключаем фазный проводник питания непосредственно к разряднику и подключаем разрядник с другой стороны к клеммной колодке PE.

Но в этом домашнем коммутаторе больше ничего, кроме импульсного ограничителя. Добавим недостающие элементы.

Как видите, установка ограничителя перенапряжений не влияет на дальнейшую организацию компонентов в домашнем коммутационном щитке. Соединение устройства остаточного тока и автоматических выключателей осуществляется так же.

Вообще в распределительных устройствах разрядники перенапряжения класса B, C или B + C устанавливаются перед автоматическим выключателем (или автоматическими выключателями) и предохранителями токовой защиты. Но ограничитель является первым элементом, лежащим в основе защиты дома или квартиры.

Трехфазная установка

В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:

  • 3-фазные провода
  • 1 нейтральный провод

Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.

Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).

Безопасность и эффективность ограничителя

В бытовых установках это не часто практикуется, потому что защита от короткого замыкания существует в виде прерывателя или предохранителя, а его малый номинальный ток безопасно защищает сеть от сбоев.

Параметры ограничителя перенапряжений

Перед тем как пойти в магазин и купить это устройство, нужно знать следующее:

  1. Количество модулей (терминалов) — зависит от типа вашей сети. 1 модуль можно купить когда есть однофазная система TN-C. 3 модуля, когда установка находится в сети TN-C трехфазной и 4 модуля когда сеть является трехфазной в TN-S или TT.
  2. Класс (тип) — можно выбирать между классами B, C или B + C. Если не уверены что перед вашей квартирой используется ограничитель типа B, стоит выбрать решение B + C. В противном случае ограничителя типа C будет достаточно.
  3. Номинальное напряжение, в котором работает ограничитель.
  4. Uc — рабочее напряжение протектора, то есть максимальный уровень напряжения который приведет к срабатыванию.
  5. In — номинальный ток ограничителя, то есть какой ток в случае короткого замыкания может протекать через разрядник.
  6. Imax — ток, который разрядник способен принимать во время атмосферного разряда. Обратите внимание, что оба значения (In = 30 000A и Imax = 60 000A) будут относительно большими по отношению к току при нормальной работе приборов в доме.
  7. Up — напряжение до которого уменьшается в случае разрыва. Например если потенциал достигает напряжения 10 000 В в случае всплеска — итоговое значение снижается до 150.

Стоит ли применять ограничитель в сети

Каждый электрик размышляет стоит ли вообще покупать разрядник. Ведь это не самый дешевый элемент электромонтажа. Теоретически, во время ремонта или строительства проводки с нуля в квартире или доме расходы 3000 рублей (в случае 4-модульного протектора) — капля в океане расходов. На практике у защитного блока не всегда будет возможность доказать, что он нужен. Даже если он сработает, снижение напряжения может не всегда защитить чувствительные электронные устройства (лучше обстоит дело с защитой класса D).

 

Возможно, будет полезно почитать: