Общая характеристика инструментальных методов анализа. Новые инструментальные методы в аналитической химии. Инструментальные методы исследования сердечно-сосудистой системы

В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определения нескольких компонентов, сочетания нескольких методов, автоматизации и использования компьютеров для обработки результатов анализа. Как правило, в инструментальных методах анализа применяются сенсоры (датчики), и, прежде всего, химические сенсоры, которые дают информацию о составе среды, в которой они находятся. Сенсоры связаны с системой накопления и автоматической обработки информации.

Условно инструментальные методы анализа можно разделить на три группы: спектральные и оптические, электрохимические и хроматографические методы анализа.

Спектральные и оптические методы анализа основаны на взаимодействии определяемого вещества и электромагнитного излучения (ЭМИ). Методы классифицируются по нескольким признакам – принадлежности ЭМИ к определенной части спектра (УФ – спектроскопия, фотоэлектроколориметрия, ИК – спектроскопия), уровню взаимодействия веществ, с ЭМИ (атом, молекула, ядро атома), физическим явлением (эмиссия, абсорбция и т.д.). Классификация спектральных и оптических методов по основным признакам приведена в табл. 12.

Атомно-эмиссионная спектроскопия – группа методов анализа, основанных на измерении длины волны и интенсивности светового потока, излучаемого возбужденными атомами в газообразном состоянии.

Таблица 12.

Классификация спектральных и оптических методов

Физическое явление Уровень взаимодействия
Атом Молекула
Спектральные методы
Поглощение света (адсорбция) Атомно-адсорбционная спектроскопия (ААС) Молекулярно-адсорбционная спектроскопия (МАС): фотоэлектроколориметрия, спектрофотометрия
Излучение света (эмиссия) Атомно-эмиссионная спектроскопия (АЭС): фотометрия пламени Молекулярно-эмиссионная спектроскопия (МЭС): люминесцентный анализ
Вторичная эмиссия Атомно-флуорисцентная спектроскопия (АФС) Молекулярно- флуорисцентная спектроскопия (МФС)
Рассеивание света - Спектроскопия рассеяния: нефелометрия, турбидеметрия
Оптические методы
Преломление света - Рефрактометрия
Вращение плоскополяризованного света - Поляриметрия

При эмиссионном анализе определяемое вещество, находящееся в газовой фазе, подвергают возбуждению, сообщая системе энергию в виде ЭМИ. Энергия, необходимая для перехода атома из нормального в возбужденное состояние, называется энергией возбуждения (потенциалом возбуждения ) . В возбужденном состоянии атом находится 10 -9 – 10 -8 с, затем, возвращаясь на более низкий энергетический уровень, испускает квант света в строго определенной частоты и длины волны.

Фотометрия пламени – метод анализа, основанный на фотометрировании излучения возбужденных в пламени атомов. Вследствие высокой температуры в пламени возбуждаются спектры элементов, имеющие низкую энергию возбуждения, - щелочные и щелочноземельные металлы.

Качественный анализ проводят по окраске перлов пламени и характерным спектральным линиям элементов. Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой или нихромовой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии веществ тех или иных элементов, например, в цвета: ярко-желтый (натрий), фиолетовый (калий), кирпично-красный (кальций), карминово-красный (стронций), желто-зеленый (медь или бор), бледно-голубой (свинец или мышьяк).

Количественный анализ основан на эмпирической зависимости интенсивности спектральной линии определяемого элемента от его концентрации в пробе с использованием градуировочного графика.

Фотоэлектроколориметрия основана на поглощении света определяемым веществом в видимой области спектра (400 – 760 нм); это разновидность молекулярно-адсорбционной спектроскопии. В ходе анализа поток света, походя через светопоглощающий раствор, частично рассеивается, преломляется, но большая часть поглощается, и поэтому на выходе интенсивность потока света меньше, чем на входе. Этот метод применяют для качественного и количественного анализа истинных растворов.

Турбидиметрический метод основан на поглощении и рассеивании монохроматического света взвешенными частицами анализируемого вещества. Метод применяется для анализа суспензий, эмульсий, при определении в растворах, природных и технологических водах веществ (хлориды, сульфаты, фосфаты), способных образовывать труднорастворимые соединения.

К оптическим методам анализа относятся рефрактометрия и поляриметрия.

Рефрактометрический метод основан на преломлении света при прохождении луча через границу раздела прозрачных однородных сред. При падении луча света на границу раздела двух сред происходит частичное отражение от поверхности раздела и частичное распространение света в другой среде. Метод используют для идентификации и частоты веществ, количественного анализа.

Поляриметрия – оптический неспектральный метод анализа, основанный на вращении плоскополяризованного монохроматического луча света оптически активными веществами. Метод предназначен для качественного и количественного анализа только оптически активных веществ (сахарозы, глюкозы и др.), способных вращать плоскость поляризации света.

Электрохимические методы анализа основаны на измерении потенциалов, силы тока и других характеристик при взаимодействии анализируемого вещества с электрическим током. Эти методы делятся на три группы: методы, основанные на электродных реакциях, протекающих в отсутствии тока (потенциометрия ); методы, основанные на электродных реакциях, протекающих под действием тока (вольтамперометрия, кулонометрия, электрогравиметрия ); методы, основанные на измерениях без протекания электродной реакции (кондуктометрия – низкочастотное титрование и осциллометрия – высокочастотное титрование).

По приемам применения электрохимические методы классифицируются на прямые , основанные на непосредственной зависимости аналитического сигнала от концентрации вещества, и косвенные (установление точки эквивалентности при титровании).

Для регистрации аналитического сигнала необходимы два электрода – индикаторный и электрод сравнения. Электрод, потенциал которого зависит от активности определяемого ионов, называется индикаторным . Он должен быстро и обратимо реагировать на изменение концентрации определяемых ионов в растворе. Электрод, потенциал которого не зависит от активности определяемых ионов и остается постоянным, называется электродом сравнения . Например, при определении рН растворов в качестве индикаторного электрода используют стеклянный электрод, а электрода сравнения – хлорсеребряный (см. тему 9).

Потенциометрический метод основан на измерении электродвижущих сил обратимых гальванических элементов и применяется для определения концентрации (активности) ионов в растворе. При расчетах используют уравнение Нернста.

Вольтамперометрия – группа методов, основанных на процессах электрохимического окисления или восстановления определяемого вещества, протекающих на микроэлектроде и обусловливающих возникновение диффузного тока. Методы основаны на изучении вольтамперных кривых (вольтамперограмм), отражающих зависимость силы тока от приложенного напряжения. Вольтамперограммы позволяют одновременно получить информацию о качественном и количественном составе анализируемого раствора, а также о характере электродного процесса.

В методах вольтамперометрии применяют двух- и трехэлектродные ячейки. Индикаторные электроды – рабочие поляризуемые электроды, на которых протекают процессы электроокисления или электровосстановления вещества; электроды сравнения – электроды второго рода (насыщенные хлорсеребряный или каломельный).

Если в качестве рабочего поляризуемого электрода применяют ртутный капающий с постоянно обновляющейся поверхностью, а электродом сравнения служит слой ртути на дне ячейки, то метод называется полярографией .

В современной вольтамперометрии применяют любые индикаторные электроды (вращающиеся или стационарный платиновый или графитовый, стационарный ртутный), кроме капающего ртутного электрода.

Кондуктометрический метод основан на измеренииэлектрической проводимости растворов в зависимости от концентрации присутствующих заряженных частиц. Объекты анализа – растворы электролитов. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.

Хроматогафические методы разделения, идентификации и количественного определения основаны на различных скоростях движения отдельных компонентов в потоке подвижной фазы вдоль слоя неподвижной фазы, причем анализируемые вещества находятся в обеих фазах. Эффективность разделения достигается за счет многократно повторяющихся циклов сорбция – десорбция. При этом компоненты по-разному распределяются между подвижной и неподвижной фазами в соответствии с их свойствами, в результате происходит разделение. Условно хроматографические методы можно разделить на газовую хроматографию, ионообменную и бумажную.

Газовая хроматография – метод разделения летучих термостабильных соединений, основанный на распределении веществ между фазами, одна из которых – газ, другая – твердый сорбент или вязкая жидкость. Разделение компонентов смеси происходит из-за различной адсорбционной способности или растворимости анализируемых веществ при движении их газообразной смеси в колонке с потоком подвижной фазы вдоль неподвижной фазы.

Объекты анализа в газовой хроматографии – газы, жидкости и твердые вещества с молекулярной массой менее 400 и температурой кипения менее 300 0 С. При хроматографическом разделении анализируемые соединения не должны подвергаться деструкции.

Ионообменная хроматография – метод разделения и анализа веществ, основанный на эквивалентном обмене ионов анализируемой смеси и ионообменника (ионита). Происходит обмен ионами между фазами гетерогенной системы. Неподвижной фазой являются иониты; подвижной, как правило, вода, так как обладает хорошими растворяющими и ионизирующими свойствами. Соотношение концентраций обменивающихся ионов в растворе и фазе сорбентов (ионита) определяется ионообменным равновесием.

Хроматография на бумаге относится к плоскостной хроматографии, она основана на распределении анализируемых веществ между двумя несмешивающимися жидкостями. В распределительной хроматографии разделение веществ происходит вследствие различия коэффициентов распределения компонентов между двумя несмешивающимися жидкостями. Вещество присутствует в обеих фазах в виде раствора. Неподвижная фаза удерживается в порах хроматографической бумаги, не взаимодействуя с ней, бумага выполняет функцию носителя неподвижной фазы.

Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.

Вопросы для самоподготовки:

1. Что такое химическая идентификация вещества?

2. Какие виды анализа вам известны?

3. Что такое чистота веществ?

4. Как проводят идентификацию катионов неорганических веществ?

5. Как проводят идентификацию анионов неорганических веществ?

6. Как классифицируются методы количественного анализа?

7. Каковы основы гравиметрического метода анализа?

8. Какова характеристика титриметрических методов анализа?

9. Какова характеристика химических методов анализа?

10. Как классифицируют инструментальные методы анализа?

11. Каковы основы электрохимических методов анализа?

12. Каковы основы хроматографических методов анализа?

13. Каковы основы оптических методов анализа?

Литература:

1. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

2. Ахметов Н.С. Лабораторные и семинарские занятия по общей и неорганической химии. М.: Высшая шк. – 2003, 367 с.

3. Васильев В.П. Аналитическая химия. - М.: Высш. шк. – 1989, Ч. 1, 320 с, Ч. 2., 326 с.

4. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

5. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

6. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

7. Общая химия. Биофизичекая химия. Химия биогенных элементов./ Под ред Ю.А. Ершова - М.: Высш. шк. – 2002, 560 с.

8. Фролов В.В. Химия. – М.: Высш. шк. – 1986, 450 с.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O

1. Классификация инструментальных методов анализа по измерительному параметру и способу измерения. Примеры инструментальных методов анализа для качественного анализа веществ

В одном из способов классификации инструментальных (физико-химических) методов в основу анализа положена природа измеряемого физического параметра анализируемой системы и способа его измерения; величина этого параметра является функцией количества вещества. В соответствии с этим все инструментальные методы делятся на пять больших групп:

Электрохимические;

Оптические;

Хроматографические;

Радиометрические;

Масс-спектрометрические.

Электрохимические методы анализа основаны на использовании электрохимических свойств анализируемых веществ. К ним относятся следующие методы.

Электрогравиметрический метод - основан на точном измерении массы определяемого вещества или его составных частей, которые выделяются на электродах при прохождении постоянного электрического тока через анализируемый раствор.

Кондуктометрический метод - основан на измерении электрической проводимости растворов, которая изменяется в результате протекающих химических реакций и зависит от свойств электролита, его температуры и концентрации растворенного вещества.

Потенциометрический метод - основан на измерении потенциала электрода, погруженного в раствор исследуемого вещества. Потенциал электрода зависит от концентрации соответствующих ионов в растворе при постоянных условиях измерений, которые проводят с помощью приборов потенциометров.

Полярографический метод - основан на использовании явления концентрационной поляризации, возникающей на электроде с малой поверхностью при пропускании электрического тока через анализируемый раствор электролита.

Кулонометрический метод - основан на измерении количества электричества, израсходованного на электролиз определенного количества вещества. В основе метода лежит закон Фарадея.

Оптические методы анализа основаны на использовании оптических свойств исследуемых соединений. К ним относятся следующие методы.

Эмиссионный спектральный анализ - основан на наблюдении линейчатых спектров, излучаемых парами веществ при их нагревании в пламени газовой горелки, искры или электрической дуге. Метод дает возможность определять элементный состав веществ.

Абсорбционный спектральный анализ в ультрафиолетовой, видимой и инфракрасной областях спектра. Различают спектрофотометрический и фотоколориметрический методы. Спектрофотометрический метод анализа основан на измерении поглощения света (монохроматического излучения) определенной длины волны, которая соответствует максимуму кривой поглощения вещества. Фотоколориметрический метод анализа основан на измерении светопоглощения или определения спектра поглощения в приборах - фотоколориметрах в видимом участке спектра.

Рефрактометрия - основана на измерении коэффициента преломления.

Поляриметрия - основана на измерении вращения плоскости поляризации.

Нефелометрия - основана на использовании явлений отражения или рассеивания света неокрашенными частицами, взвешенными в растворе. Метод дает возможность определять очень малые количества вещества, находящиеся в растворе в виде взвеси.

Турбидиметрия - основанная на использовании явлений отражения или рассеивания света окрашенными частицами, которые находятся во взвешенном состоянии в растворе. Свет, поглощенный раствором или прошедший через него, измеряют так же, как и при фотоколориметрии окрашенных растворов.

Люминесцентный или флуоресцентный анализ - основан на флуоресценции веществ, которые подвергаются облучению ультрафиолетовым светом. При этом измеряется интенсивность излучаемого или видимого света.

Пламенная фотометрия (фотометрия пламени) - основана на распылении раствора исследуемых веществ в пламени, выделении характерного для анализируемого элемента излучения и измерении его интенсивности. Метод используют для анализа щелочных, щелочноземельных и некоторых других элементов.

Хроматографические методы анализа основаны на использовании явлений избирательной адсорбции. Метод применяют в анализе неорганических и органических веществ для разделения, концентрирования, выделения отдельных компонентов из смеси, очистки от примесей.

Радиометрические методы анализа основаны на измерении радиоактивного излучения данного элемента.

Масс-спектрометрические методы анализа основаны на определении масс отдельных ионизированных атомов, молекул и радикалов, в результате комбинированного действия электрического и магнитного полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах - масс-спектрометрах или масс-спектрографах.

Примеры инструментальных методов анализа для качественного анализа веществ: рентгено-флуоресцентный, хроматография, кулонометрия, эмиссионный, пламенная фотометрия и т.д.

2.

2. 1 Сущность потенциометрического титрования. Требования к реакциям. Примеры реакций окисления-восстановления, осаждения, комплексообразования и соответствующие им электродные системы. Графические способы опреде ления конечной точки титрования

Потенциометрическое титрование основано на определении эквивалентной точки по изменению потенциала на электродах, опущенных в титруемый раствор. При потенциометрическом титровании используют электроды как неполяризующиеся (без протекания через них тока), так и поляризующиеся (с протеканием через них тока).

В первом случае в процессе титрования определяется концентрация в растворе одного из ионов, для регистрации которого имеется подходящий электрод.

Потенциал Е х на этом индикаторном электроде устанавливается согласно уравнению Нернста. Например, для реакций окисления - восстановления уравнение Нернста выглядит следующим образом:

где Е х - потенциал электрода в данных конкретных условиях; A ок - концентрация окисленной формы металла; A восст - концентрация восстановленной формы металла; Е 0 - нормальный потенциал; R - универсальная газовая постоянная (8,314 дж/(град*моль)); Т - абсолютная температура; n - разность валентностей окисленной и восстановленной форм ионов металла.

Для образования электрической цепи в титруемый раствор помещают второй так называемый электрод сравнения, например каломельный, потенциал которого в процессе реакции остается постоянным. Потенциометрическое титрование на неполяризующихся электродах помимо упомянутых реакций окисления - восстановления используется также при реакциях нейтрализации. В качестве индикаторных электродов при реакциях окисления-восстановления применяют металлы (Pt, Wo, Mo). При реакциях нейтрализации применяют чаще всего стеклянный электрод, имеющий в широкой области характеристику, аналогичную водородному электроду. Для водородного электрода зависимость потенциала от концентрации ионов водорода выражается следующей зависимостью:

Или при 25°С:

При потенциометрическом титровании часто используют титрование не до определенного потенциала, а до определенной величины рН, например, до нейтральной среды рН=7. Несколько в стороне от общепринятых методов потенциометрического титрования (без протекания тока через электроды), рас смотренных выше, стоят методы потенциометрического титрования при постоянном токе с поляризующимися электродами. Чаще применяют два поляризующихся электрода, но иногда пользуются и одним поляризующимся электродом.

В отличие от потенциометрического титрования с неполяризующимися электродами, при котором ток через электроды практически не протекает, в данном случае через электроды (обычно платиновые) пропускается небольшой (около нескольких микроампер) постоянный ток, получаемый от источника стабилизированного тока. В качестве источника тока может служить высоковольтный источник питания (около 45 В) с последовательно включенным относительно большим сопротивлением. Измеряемая на электродах разность потенциалов резко возрастает при приближении реакции к эквивалентной точке вследствие поляризации электродов. Величина скачка потенциала может быть гораздо больше, чем при титровании при нулевом токе с неполяризующимися электродами.

Требования к реакциям при потенциометрическом титровании - это полнота прохождения реакции; достаточно большая скорость реакции (чтобы результаты не приходилось ждать, и была возможность автоматизации); получение в реакции одного четкого продукта, а не смеси продуктов, которые при различных концентрациях могут получаться.

Примеры реакций и соответствующие им электродные системы:

Окисление -восстановлени е :

Система электродов:

В обоих случаях используется система, которая состоит из платинового электрода и хлорсеребряного.

О саждени е :

Ag + + Cl - =AgClv.

Система электродов:

К омплексообразовани е :

Система электродов:

Графические способы определения конечной точки титрования. Принцип заключается в визуальном изучении полной кривой титрования. Если начертить зависимость потенциала индикаторного электрода от объема титранта, то на полученной кривой имеется максимальный наклон - т.е. максимальное значение ДE/ДV - который можно принять за точку эквивалентности. Рис. 2.1, показывающий именно такую зависимость, построен по данным табл. 2.1.

Таблица 2.1 Результаты потенциометрического титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра

Рис. 2.1 Кривые титрования 3,737 ммоль хлорида 0,2314 F раствором нитрата серебра: а - обычная кривая титрования, показывающая область вблизи точки эквивалентности; б - дифференциальная кривая титрования (все данные из табл. 2.1)

Метод Грана. Можно построить график ДE/ДV - изменение потенциала на объем порции титранта как функцию объема титранта. Такой график, полученный из результатов титрования, приведенных в табл. 2.1, показан на рис. 2.2.

Рис. 2.2 Кривая Грана, построенная по данным потенциометрического титрования, представленным в табл. 2.1

2.2 Задача : в ычислить потенциал платинового электрода в растворе сульфата железа (II), оттитрованного раствором перманганата калия на 50% и 100,1%; если концентрация ионов FeІ ? , H ? и MnO ?? равны 1 моль/дмі

Потенциал платинового электрода - электрода третьего рода - определяется природой сопряженной окислительно-восстановительной пары и концентрацией ее окисленной и восстановленной форм. В данном растворе имеется пара:

Fe 3+ + e - Fe 2+ ,

для которой:

Поскольку исходный раствор оттитрован на 50%, то /=50/50 и 1.

Следовательно, E = 0,77 + 0,058 lg1 = 0,77 В.

3. Амперометрическое титрование

3.1 Амперометрическое титрование, его сущность, условия. Типы кривых титрования в зависимости от природы титруемого вещества и титранта на примерах конкретных реакци й

Амперометрическое титрование. Для амперометрической индикации в титровании можно использовать ячейку такого же принципиального устройства, что и для прямой амперометрии. В этом случае метод называется амперометрическим титрованием с одним поляризованным электродом. В ходе титрования контролируют ток, обусловленный определяемым веществом, титрантом или продуктом реакции, при постоянном значении потенциала рабочего электрода, находящимся в области потенциалов предельного диффузионного тока.

В качестве примера рассмотрим осадительное титрование ионов Рb 2+ раствором хромата калия при различных потенциалах рабочего электрода.

Области предельных диффузионных токов окислительно-восстановительных пар Pb 2+ /Pb и СrО 4 2- /Сr(ОН) 3 расположены таким образом, что при потенциале 0 В хромат-ион уже восстанавливается, а ион Рb 2+ еще нет (этот процесс происходит лишь при более отрицательных потенциалах).

В зависимости от потенциала рабочего электрода можно получить кривые титрования различной формы.

а) Потенциал равен - 1В (рис. 3.1):

До точки эквивалентности протекающий через ячейку ток является катодным током восстановления ионов Рb 2+ . При добавлении титранта их концентрация уменьшается, и ток падает. После точки эквивалентности ток обусловлен восстановлением Cr(VI) до Сr(III), вследствие чего по мере добавления титранта катодный ток начинает возрастать. В точке эквивалентности (ф=1) на кривой титрования наблюдается резкий излом (на практике он бывает выражен слабее, чем на рис. 3.1).

б) Потенциал равен 0 В:

При этом потенциале ионы Рb 2+ не восстанавливаются. Поэтому до точки эквивалентности наблюдается лишь небольшой постоянный остаточный ток. После точки эквивалентности в системе появляются свободные хромат-ионы, способные к восстановлению. При этом по мере добавления титранта катодный ток возрастает, как и в ходе титрования при - 1В (рис. 3.1).

Рис. 3.1 Кривые амперометрического титрования Рb 2+ хромат-ионами при потенциалах рабочего электрода - 1В и 0 В

По сравнению с прямой амперометрией амперометрическое титрование, как и любой титриметрическии метод, характеризуется более высокой точностью. При этом метод амперометрического титрования более трудоемок. Наиболее широко применяются на практике методики амперометрического титрования с двумя поляризованными электродами.

Биамперометрическое титрование . Этот вид амперометрического титрования основан на использовании двух поляризуемых электродов - обычно платиновых, на которые подается небольшая разность потенциалов - 10-500 мВ. В этом случае прохождение тока возможно лишь при протекании обратимых электрохимических реакций на обоих электродах. Если хоть одна из реакций кинетически затруднена, происходит поляризация электрода, и ток становится незначительным.

Вольтамперные зависимости для ячейки с двумя поляризуемыми электродами приведены на рис. 3.2. В этом случае играет роль лишь разность потенциалов между двумя электродами. Значение потенциала каждого из электродов в отдельности остается неопределенным ввиду отсутствия электрода сравнения.

Рис 3.2 Вольтамперные зависимости для ячейки с двумя одинаковыми поляризуемыми электродами в случае обратимой реакции без перенапряжения (а ) и необратимой реакции с перенапряжением (б ).

В зависимости от степени обратимости электродных реакций можно получить кривые титрования различной формы.

а) Титрование компонента обратимой окислительно-восстановительной пары компонентом необратимой пары, например, иода тиосульфатом (рис. 3.3, а ):

I 2 + 2S 2 O 3 2- 2I - + S 4 O 6 2- .

До точки эквивалентности через ячейку протекает ток, обусловленный процессом:

2I - I 2 + e - .

Ток возрастает вплоть до величины степени оттитрованности, равной 0,5, при которой оба компонента пары І 2 /І - находятся в одинаковых концентрациях. Затем ток начинает убывать вплоть до точки эквивалентности. После точки эквивалентности вследствие того, что пара S 4 O 6 2- /S 2 O 3 2- является необратимой, наступает поляризация электродов, и ток прекращается.

б) Титрование компонента необратимой пары компонентом обратимой пары, например, ионов As(III) бромом (рис. 3.3, б ):

До точки эквивалентности электроды поляризованы, поскольку окислительно-восстановительная система As(V)/As(III) необратима. Через ячейку не протекает ток. После точки эквивалентности ток возрастает, поскольку в растворе появляется обратимая окислительно-восстановительная система Вr 2 /Вr - .

в) Определяемое вещество и титрант образуют обратимые окислительно-восстановительные пары: титрование ионов Fe(II) ионами Ce(IV) (рис. 3.3, в ):

Здесь поляризации электродов не наблюдается ни на каком этапе титрования. До точки эквивалентности ход кривой такой же, как на рис. 3.3, а , после точки эквивалентности - как на рис. 3.3, б .

Рис. 3.3 Кривые биамперометрического титрования иода тиосульфатом (a ), As(III) бромом (б ) и ионов Fe(II) ионами Ce(IV) (в )

3.2 Задача : в электрохимическую ячейку с платиновым микроэлектродом и электродом сравнения поместили 10,00 смі раствора NaCl и оттитровали 0,0500 моль/дмі раствором AgNO 3 объёмом 2,30 смі. Рассчитать содержание NaCl в растворе (%)

В растворе идет реакция:

Ag + + Cl - =AgClv.

V(AgNO 3) = 0,0023 (дм 3);

n(AgNO 3) = n(NaCl);

n(AgNO 3)=c(AgNO 3)*V(AgNO 3)=0,0500*0,0023=0,000115,

или 1,15*10 4 (моль).

n(NaCl) = 1,15*10 -4 (моль);

m(NaCl) = M(NaCl)* n(NaCl) = 58,5*1,15*10 -4 = 6,73*10 -3 г.

Плотность р-ра NaCl примем за 1 г/см 3 , тогда масса р-ра будет 10 г, отсюда:

щ(NaCl) = 6,73*10 -3 /10*100 % = 0,0673 %.

Ответ: 0,0673 %.

4. Хроматографические методы анализа

4.1 Фазы в хроматографических методах анализа, их характеристика. Основы жидкостной хроматографии

Метод жидкостной распределительной хроматографии предложен Мартином и Синджем, которые показали, что высота, эквивалентная теоретической тарелке, соответствующим образом наполненной колонки может достигать 0,002 см. Таким образом, колонка длиной 10 см может содержать порядка 5000 тарелок; высокой эффективности разделения можно ожидать даже от сравнительно коротких колонок.

Стационарная фаза. Наиболее распространенным твердым носителем в распределительной хроматографии служит кремневая кислота или силикагель. Этот материал сильно поглощает воду; таким образом, стационарной фазой является вода. Для некоторых разделений полезно в пленку из воды включить какой-либо буфер или сильную кислоту (или основание). В качестве стационарной фазы на силикагеле нашли также применение полярные растворители, такие, как алифатические спирты, гликоли или нитрометан. К другим носителям относятся диатомиты, крахмал, целлюлоза и толченое стекло; для смачивания этих твердых носителей используют воду и разные органические жидкости.

Подвижная фаза. Подвижной фазой может служить чистый растворитель или смесь растворителей, которые в заметной степени не смешиваются со стационарной фазой. Повысить эффективность разделения иногда можно непрерывным изменением состава смешанного растворителя по мере продвижения элюента (градиентное элюирование). В некоторых случаях разделение улучшается, если элюирование проводят рядом разных растворителей. Подвижную фазу выбирают главным образом эмпирически.

Современные приборы часто снабжены насосом для ускорения потока жидкости через колонку.

Основными параметрами ЖХ, характеризующими поведение вещества в колонке, являются время удерживания компонента смеси и удерживаемый объем. Время от момента ввода анализируемой пробы до регистрации максимума пика называют временем удерживания (элюирования) t R . Время удерживания складывается из двух составляющих - времени пребывания вещества в подвижной t 0 и неподвижной t s фазах:

t R .= t 0 + t s . (4.1)

Значение t 0 фактически равно времени прохождения через колонку адсорбируемого компонента. Значение t R не зависит от количества пробы, но зависит от природы вещества и сорбента, а также упаковки сорбента и может меняться от колонки к колонке. Поэтому для характеристики истинной удерживающей способности следует ввести исправленное время удерживания t? R :

t? R = t R - t 0 . (4.2)

Для характеристики удерживания часто используют понятие удерживаемого объема V R - объем подвижной фазы, который нужно пропустить через колонку с определенной скоростью, чтобы элюировать вещество:

V R = t R F, (4.3)

где F - объемная скорость потока подвижной фазы, см 3 с -1 .

Объем для вымывания несорбируемого компонента (мертвый объем) выражается через t 0 : V 0 = t 0 F , и включает в себя объем колонки, не занятый сорбентом, объем коммуникаций от устройства ввода пробы до колонки и от колонки до детектора.

Исправленный удерживаемый объем V? R соответственно равен:

V? R = V R - V 0 . . (4.4)

При постоянных условиях хроматографирования (скорость потока, давление, температура, состав фаз) значения t R и V R строго воспроизводимы и могут быть использованы для идентификации веществ.

Любой процесс распределения вещества между двумя фазами характеризуют коэффициентом распределения D . Величина D отношением c s /c 0 , где с т и с 0 - концентрации вещества в подвижной и неподвижной фазах соответственно. Коэффициент распределения связан с хроматографическими параметрами.

Характеристикой удерживания является также коэффициент емкости k" , определяемый как отношение массы вещества в неподвижной фазе к массе вещества в подвижной фазе: k" = m н /m п . Коэффициент емкости показывает, во сколько раз вещество дольше находится в неподвижной фазе, чем в подвижной. Величину k" вычисляют из экспериментальных данных по формуле:

Важнейшим параметром хроматографического разделения является эффективность хроматографической колонки, количественной мерой которой служат высота Н, эквивалентная теоретической тарелке, и число теоретических тарелок N.

Теоретическая тарелка - это гипотетическая зона, высота которой соответствует достижению равновесия между двумя фазами. Чем больше теоретических тарелок в колонке, т.е. чем большее число раз устанавливается равновесие, тем эффективнее колонка. Число теоретических тарелок легко рассчитать непосредственно из хроматограммы, сравнивая ширину пика w и время пребывания t R компонента в колонке :

Определив N и зная длину колонки L , легко вычислить Н :

Эффективность хроматографической колонки также характеризует симметричность соответствующего пика: чем более симметричен пик, тем более эффективной является колонка. Численно симметричность выражают через коэффициент симметрии K S , который может быть определен по формуле:

где b 0.05 - ширина пика на одной двадцатой высоты пика; А - расстояние между перпендикуляром, опущенным из максимума пика, и передней границей пика на одной двадцатой высоты пика.

Для оценки воспроизводимости хроматографического анализа используют относительное стандартное отклонение (RSD), характеризующее рассеяние результатов в выборочной совокупности:

где n - количество параллельных хроматограмм; х - содержание компонента в пробе, определенное путем расчета площади или высоты соответствующего пика на хроматограмме; - среднее значение содержания компонента, рассчитанное на основании данных параллельных хроматограмм; s 2 - дисперсия полученных результатов.

Результаты хроматографического анализа считаются вероятными, если выполняются условия пригодности хроматографической системы:

Число теоретических тарелок, рассчитанное по соответствующему пику, должно быть не менее требуемого значения;

Коэффициент разделения соответствующих пиков должен быть не менее требуемого значения;

Относительное стандартное отклонение, рассчитанное для высоты или площади соответствующего пика, должно быть не более требуемого значения;

Коэффициент симметрии соответствующего пика должен быть в требуемых пределах.

4.2 За дача : р ассчитать методом внутреннего стандарта содержание анализируемого вещества в пробе (в г и %), если при хроматографировании получены следующие данные: при калибровке: qВ=0,00735, SВ =6,38 смІ, qСТ=0,00869 г, SСТ=8,47 смІ , -при анализе: SВ=9,38 смІ, VВ=47 ммі, qСТ=0,00465 г, SСТ=4,51 смІ

SСТ/SВ = k*(qСТ/ qВ);

k = (SСТ/SВ)/(qСТ/ qВ) = (8,47/6,38)/(0,00869/0,00735) = 1,123;

qВ = k*qСТ*(SВ/SСТ) = 1,123*0,00465*(9,38/4,51) = 0,01086 г.

x, % = k*r*(SВ/SСТ)*100;

r = qСТ/ qВ = 0,00465/0,01086 = 0,4282;

x, % = 1,123*0,4282*(9,38/4,51) = 100%.

5. Фотометрическое титрование

5.1 Фотометрическое титрование. Сущность и условия титрования. Кривые титрования. Преимущества фотометрического титрования в сравнении с прямой фотометрией

Фотометрические и спектрофотометрические измерения можно использовать для фиксирования конечной точки титрования. Конечная точка прямого фотометрического титрования появляется в результате изменения концентрации реагента и продукта реакции или обоих одновременно; очевидно, по меньшей мере, одно из этих веществ должно поглощать свет при выбранной длине волны. Косвенный метод основан на зависимости оптической плотности индикатора от объема титранта.

Рис. 5.1 Типичные кривые фотометрического титрования. Молярные коэффициенты поглощения определяемого вещества, продукта реакции и титранта обозначены символами е s , е p , е t соответственно

Кривые титрования . Кривая фотометрического титрования представляет собой график зависимости исправленной оптической плотности от объема титранта. Если условия выбраны правильно, кривая состоит из двух прямолинейных участков с разным наклоном: один из них соответствует началу титрования, другой - продолжению за точкой эквивалентности. Вблизи точки эквивалентности часто наблюдается заметный перегиб; конечной точкой считают точку пересечения прямолинейных отрезков после экстраполяции.

На рис. 5.1 приведены некоторые типичные кривые титрования. При титровании непоглощающих веществ окрашенным титрантом с образованием бесцветных продуктов в начале титрования получается горизонтальная линия; за точкой эквивалентности оптическая плотность быстро растет (рис. 5.1, кривая а ). При образовании окрашенных продуктов из бесцветных реагентов, наоборот, сначала наблюдается линейный рост оптической плотности, а затем появляется область, в которой поглощение не зависит от объема титранта (рис. 5.1, кривая б ). В зависимости от спектральных характеристик реагентов и продуктов реакции возможны также кривые других форм (рис. 5.1).

Чтобы конечная точка фотометрического титрования была достаточно отчетливой, поглощающая система или системы должны подчиняться закону Бера; в противном случае нарушается линейность отрезков кривой титрования, необходимая для экстраполяции. Необходимо, далее, ввести поправку на изменение объема путем умножения оптической плотности на множитель (V+v)/V, где V - исходный объем раствора, a v - объем добавленного титранта.

Фотометрическое титрование часто обеспечивает более точные результаты, чем прямой фотометрический анализ, так как для определения конечной точки объединяются данные нескольких измерений. Кроме того, при фотометрическом титровании присутствием других поглощающих веществ можно пренебречь, поскольку измеряется только изменение оптической плотности.

5.2 Задача : н авеску дихромата калия массой 0,0284 г растворили в мерной колбе вместимостью 100,00 смі. Оптическая плотность полученного раствора при л max =430 нм равна 0,728 при толщине поглощённого слоя 1 см. вычислить молярную и процентную концентрацию, молярный и удельный коэффициенты поглощения этого раствора

где - оптическая плотность раствора; е - молярный коэффициент поглощения вещества, дм 3 *моль -1 *см -1 ; с - концентрация поглощающего вещества, моль/дм 3 ; l - толщина поглощающего слоя, см.

где k - удельный коэффициент поглощения вещества, дм 3 *г -1 *см -1 .

n(K 2 Cr 2 O 7) = m(K 2 Cr 2 O 7)/ M(K 2 Cr 2 O 7) = 0,0284/294 = 9,67*10 -5 (моль);

c(K 2 Cr 2 O 7) = 9,67*10 -5 /0,1 = 9,67*10 -4 (моль/л);

Плотность р-ра K 2 Cr 2 O 7 примем за 1 г/см 3 , тогда масса р-ра будет 100 г, отсюда:

щ(NaCl) = 0,0284/100*100 % = 0,0284 %.

е = D/cl =0,728/9,67*10 -4 *1 = 753 (дм 3 *моль -1 *см -1).

k = D/cl =0,728/0,284 *1 = 2,56(дм 3 *г -1 *см -1).

6. Описать и объяснить возможность использования инструментальных методов анализа (оптических, электрохимических, хроматографических) для качественного и количественного определения хлорида цинка

Хлорид ZnCl 2 ; M=136,29; бц. триг., расплыв; с=2,91 25 ; tпл=318; tкип=732; С°р=71,33; S°=111,5; ДН°=-415,05; ДG°=-369,4; ДНпл=10,25; ДНисп=119,2; у=53,83 20 ; 53,6 400 ; 52,2 700 ; р=1 428 ; 10 506 ; s=208 0 ; 272 10 ; 367 20 ; 408 25 ; 438 30 ; 453 40 ; 471 50 ; 495 60 ; 549 80 ; 614 100 ; х.р.эф.; р.эт. 100 12,5 , ац. 43,5 18 ; пир. 2,6 20 ; н.р.ж. NH 3 .

Хлорид цинка ZnCl 2 в наибольшей мереизученный из галогенидов, получается растворением цинковой обманки, окиси цинка или металлического цинка в соляной кислоте. Безводный хлорид цинка представляет собой белый зернистый порошок, состоящий из гексагонально-ромбоэдрических кристаллов, легко плавится и при быстром охлаждении застывает в виде прозрачной массы, похожей на фарфор. Расплавленный хлорид цинка довольно хорошо проводит электрический ток. При прокаливании хлорид цинка улетучивается, его пары конденсируются в виде белых игл. Он очень гигроскопичен, но вместе с тем его легко получить безводным. Хлорид цинка кристаллизуется без воды при температуре выше 28°С, а из концентрированных растворов он может быть выделен безводным даже при 10°С. В воде хлорид цинка растворяется с выделением большого количества тепла (15,6 ккал/моль). В разбавленных растворах хлорид цинка хорошо диссоциирует на ионы. Ковалентный характер связи в хлориде цинка проявляется в хорошей растворимости его в метиловом и этиловом спиртах, ацетоне, диэтиловом эфире, глицерине, уксусно-этиловом эфире и других кислородосодержащих растворителях, а также диметилформамиде, пиридине, анилине и других азотосодержащих соединениях основного характера.

Хлорид цинка склонен к образованию комплексных солей, отвечающих общим формулам от Me до Me 4 , однако в наибольшей мерераспространенными и устойчивыми являются соли, в которых около атома цинка координируются четыре аниона хлора, и состав большинства солей соответствует формуле Me 2 . Как показало изучение Раман-спектров, в растворах самого хлорида цинка в зависимости от его концентрации могут присутствовать ионы 2+ , ZnCl + (ад), 2- , и не обнаружены ионы - или 2- . Известны и смешанные комплексы, с анионами нескольких кислот. Так, потенциометрическим методам было доказано образование сульфатно-хлоридных комплексов цинка в растворах. Были обнаружены смешанные комплексы: 3- , 4 , 5- .

Количественно и качественно ZnCl 2 можно определить по Zn 2+ . Количественно и качественно можно его определить фотометрическим методом по спектру поглощения. Например, с такими реагентами как дитизон, мурексид, арсазен и т.д.

Спектральное определение цинка . Очень удобны для обнаружения цинка спектральные методы анализа. Анализ проводится по группе из трех линий: 3345, 02 I; 3345,57 I 3345,93 I А, из которых первая в наибольшей мереинтенсивная, или по паре линий: 3302,59 I и 3302,94 I А.

Инструментальные методы анализа, их классификация.

Общая характеристика оптических методов анализа.

1. Особенности и области применения физико-химических методов анализа.

2. Чувствительность и селективность, правильность и воспроизводимость инструментальных методов анализа.

3. Основные приемы физико-химических методов анализа.

4. Многоволновая спектрофотометрия.

5. Дифференциальная спектрофотометрия.

6. Экстракционно-фотометрический анализ.

7. Фотометрическое титрование.

1. Особенности и области применения физико-химических методов анализа.

Все методы анализа базируются на использовании зависимости физико-химического свойства вещества, которое называется аналитическим сигналом или просто сигналом, от природы вещества и его содержания в анализируемой пробе. В классических методах анализа в качестве такого свойства используется либо масса осадка – гравиметрический анализ, либо объем реактива, использованного на реакцию – титриметрический анализ. Однако химические методы не в состоянии были удовлетворить разнообразные запросы практики, которые особенно возросли как результат НТП и развития новых областей науки, техники, промышленности. Развитие всех областей и сферы жизни поставило перед аналитической химией задачи:

1. снизить границу определения до 10-5-10-10 %. Только при содержании так называемых “запрещенных” примесей не выше 10-5 % жароустойчивые сплавы сохраняют свои свойства. Приблизительно такое же содержание примеси гафния допускается в цирконии при использовании его в качестве конструкционного материала ядерной техники. (Сначала Zr был по ошибке забракован как конструкционный материал этой области именно из-за загрязнения гафнием). Еще меньше содержание (до 10-10 %) загрязнений допускается в материалах полупроводниковой промышленности (Si, Ge и др.). Существенным образом изменяются свойства металлов, содержание примесей, в которых находится на уровне 10-5 % и меньше. Например, хром и бериллий становятся ковкими и тягучими, вольфрам и цирконий становятся пластическими, а не хрупкими. Определение таких маленьких содержаний гравиметрическим или титриметрическим методом практически не возможно, и только применение физико-химических методов анализа, владеющих значительно более низкой границей определения, разрешает решение этих аналитических задач.


Второй важной особенностью физико-химических методов анализа является их экспресность, высокий темп получения результатов. Современные автоматические квантометры разрешают получить результаты буквально через несколько минут после получения пробы в лабораторию. Современная информация о составе сырья, о степени химической переработки и т. д. дает возможность технологу активно вмешиваться в ход технологического процесса и вводить необходимые коррективы. Существенное значение имеет экспресность анализа и в металлургическом производстве, где корректировать состав стали можно по ходу выплавки в зависимости от результатов анализа. Сокращение времени плавки, которое нередко зависит от скорости выполнения анализа, дает большой экономический эффект, снижая энергетические и прочие затраты.

Физико-химические методы разрешают проводить анализ на расстоянии. Ярким примером является анализ почвы луны, выполненный рентгенфлуоресцентным устройством непосредственно на Луне, определение состава атмосферы, окружающей планету Венера. Важное практическое значение имеет дистанционный анализ в земных условиях, например, когда анализируются препараты высокой радиоактивности, токсичности, а также при анализе морских вод на больших глубинах.

Устройства, применяемые в физико-химических методах анализа (ФХМА), разрешают автоматизировать сам процесс анализа или отдельные его стадии. Автоматические газоанализаторы контролируют состав воздуха в шахтах. В значительной мере автоматизированный газовый хроматографический анализ в нефтехимической, коксохимической и др. областях промышленности.

Анализ с помощью некоторых ФХМА может быть выполнен без разрушения анализируемого образца (недеструктивный анализ), что имеет большое значение для некоторых областей промышленности, а также, для криминалистики, медицины и т. д. Недеструктивный анализ может быть выполнен рентгенофлуоресцентным, радиоактивационным и другими методами.

Часто практический интерес представляет не общее содержание какого-нибудь элемента в пробе, а его распределение по поверхности образца – так называемый локальный анализ – определение элемента в данной “точке” образца. Этот анализ имеет значение в металловедении и других областях, где состав отдельных включений определяет качество материала, а также в минералогии, петрографии, криминалистике, археологии и др. Выполняется локальный анализ рентгеноспектральным методом. Электроны собирают в очень тонкий луч диаметром 1 мкм и меньше (электронный зонд) и направляют его в то место образца, локальный анализ которого необходимо выполнить. По характеристикам рентгеновского излучения говорят о содержание элементов в “точке”. С целью выполнения локального анализа применяется также техника лазерной микроспектроскопии.

Ошибка анализа физико-химическими методами составляет в среднем 2-5 %, что превышает ошибку классических методов анализа (гравиметрический 0,01-0,005 %, титриметрический 0,1-0,05 %). Однако такое сравнение ошибок в целом не очень корректное, так как относится к разным концентрационным областям. При небольшом содержании определяемого компонента классические химические методы анализа не пригодны, при высоких концентрациях физико-химические методы успешно конкурируют с химическими, а такие методы как кулонометрия, электрогравиметрия, даже превышают их по точности.


Следует отметить также, что ошибка анализа физико-химическими методами имеет тенденцию снижаться за счет конструирования прецизионных аналитических приборов и разработки более совершенных аналитических методик.

Однако химические методы анализа своего значения не утратили, они незаменимы там, где при высоком содержании необходима высокая точность и нет серьезных ограничений во времени (например, анализ готовой продукции , арбитражный анализ, изготовление эталонов).

Существенным недостатком большинства ФХМА является то, что для их практического применения необходимы эталоны, стандартные растворы и градуировочные графики.

Задачей аналитической химии является определение содержания тех или иных веществ в исследуемой системе наиболее быстрыми, точными и рациональными методами. В зависимости от поставленной задачи используется реакция, которая либо только определяет их присутствие, либо же разрешает определить их количество в системе. В первом случае мы имеем дело с качественным, а во второй – с количественным анализом.

Все используемые сегодня методы количественного анализа можно, в общем, разделить на химические, физико-химические, физические методы.

Химические методы анализа базируются на химических свойствах веществ, на непосредственных результатах их способности принимать участие в какой-нибудь специфической химической реакции.

Физико-химические методы анализа базируются на взаимосвязи между составом системы и ее физическими и физико-химическими свойствами. Решение аналитической задачи физико-химическими методами обычно разбивается на следующие этапы:

1. Приготовление стандартных растворов (систем), отличающихся один от другого только содержанием определяемого вещества.

2. Количественная оценка (измерение величины) некоторого свойства системы для каждого из стандартных растворов.

3. Графическое выражение установленной зависимости (построение калибровального графика) в координатах: концентрация определяемого вещества (по оси абсцисс) – числовое значение данного свойства (по оси ординат).

4. Измерение выбранного свойства для исследуемого раствора и определение его концентрации по калибровальному графику.

Функциональная зависимость между численным значением данного физического или физико-химического свойства системы и содержанием анализируемого вещества может быть выражена графиком или формулой. Если все члены формулы известны, то результат анализа может быть установлен не графическим, а расчетным путем.

ФХМА классифицируют соответственно измеренных свойств систем:

В оптических методах анализа используется связь между оптическими свойствами системы:

1) светопоглощением 1) фотометрический анализ

2) светорассеянием 2) нефелометрия, турбидиметрия

3) преломление света 3) рефрактометрия

4) обращением плоскости поляризации 4) поляриметрия

плоскополяризованого света

5) вторичным свечением вещества 5) люминесцентный анализ

и ее составом.

В электрохимических методах анализа используют:

2) измерение величины электродных потенциалов 2) потенциометрия

3) наблюдение за процессом поляризации 3) полярография

микроэлектрода

4) количественное электролитическое выделение 4) электрогравиметрия

определяемого вещества

5) измерение количества электрики использованной 5) кулонометрия

при количественном электрохимическом

превращении веществ.

Наряду с оптическими и электрохимическими методами к числу важнейших физико-химических методов анализа следует отнести хроматографию. Основой хроматографии всех видов является использование различий в характере распределения разных веществ между двумя фазами. Большое значение имеют сорбционные методы, базирующиеся на отличиях в сорбции веществ, разных по составу и строению. Особое значение хроматография имеет как универсальный метод разделения веществ и их концентрирования. Концентрирование делает доступным определение исчезающе малых количеств веществ.

Отдельным направлением физико-химических методов анализа являются методы, базирующиеся на зависимости скорости реакции от концентрации реагирующего вещества. Они поэтому и называются кинетическими методами анализа. Измерение скорости реакции используется здесь для установления концентрации исследуемого компонента. Чувствительность кинетических методов анализов чрезвычайно высокая. Использование кинетических реакций разрешает устанавливать содержание миллионных долей микрограмма в миллилитре раствора.

Выполнение количественных определений весовым и объемным (титриметрическим) методами химического анализа иногда связано с большими трудностями, главными из них являются:

Необходимость предварительного отделения определяемой части от примесей;

Сравнительно небольшая чувствительность, ограничивающая применение классических методов анализа малых количеств определяемых элементов;

Большие затраты времени (особенно в весовом методе) на проведение полного анализа.

Физико-химические методы отличаются повышенной по сравнению с классическими методами чувствительностью и избирательностью, поэтому для анализа этими методами, как правило, требуется незначительное количество анализируемого вещества, а содержание определенного элемента в образце может быть чрезвычайно мало.

Таким образом, физико-химические методы анализа отличаются экспрессностью , избирательностью, высокой чувствительностью.

По чувствительности первое место занимают масс-спектральный и радиоактивационный методы анализа. За ними следуют неплохо применяемые спектральный, спектрофотометрический и полярографический методы.

Например, чувствительность определения некоторых элементов различными методами следующее: Объемным можно определить около 10-1 % ; весовым около 10 -2 % ; спектроскопическим и фотоколориметрическим 10 -3 -10 -5 % ; флуорометрическим 10 -6 -10 -7 %; кинетическими 10 -6 -10 -8 % ; радио химическими 10 -8 -10 -9 % ; методом нейтронного активационного анализа определяют многие примеси в количествах, менее 10 -8 -10 -9 % .

По точности многие физико-химические методы анализа уступают классическим, и особенно весовому методу. Нередко, когда весовым и объемным методами достигается точность, определяемая сотыми и десятыми долями процента, при выполнении анализа физико-химические методами ошибки определений составляют 5-10 % , а иногда значительно больше.

На точность определений в зависимости от метода анализа оказывают влияния различные факторы.

Например, на точность эмиссионного анализа оказывают влияние:

метод взятия средней пробы, анализируемого вещества;

непостоянство источника возбуждения (электрической дуги, искры, пламени горелки);

величина ошибки фотометрического измерения;

негомогенность фотографической эмульсии (в случае спектрографии) и т.д.

Помимо относительно невысокой точности многие физико-химические методы имеют и некоторые другие недостатки. Например, эмиссионная спектроскопия удобна лишь при проведении массовых анализов, так как для определения того или иного элемента в образце требуется калибровка прибора по стандартному образцу, занимающая много времени. Ни один из физико-химических методов анализа не является универсальным.

Необходимо отметить, что, несмотря на прогресс инструментальных методов анализа, позволяющих решать химико-аналитические задачи, классические методы анализа не утратили своего значения и являются основой современной аналитической химии.

Все методы количественного анализа, физические и фи-

зико-химические методы анализа подразделяются на следующие группы: электрохимические; спектральные (оптические); хроматографические; радиометрические; масспектрометрические.

Электрохимические методы анализа. К группе электрохимических методов анализа относятся следующие виды анализа.

Электровесовой анализ основан на выделении из растворов электролитов веществ, осаждающихся на электродах при прохождении через растворы постоянного электрического то-

ка. Выделившийся при электролизе металл или (оксид) взвешивают на аналитических весах и по массе осадка судят о содержании определяемого вещества в растворе.

Полярография основана на изменении силы тока, изменяющейся в зависимости от величины напряжения в процессе электролиза, в условиях, когда один из электродов (катод) имеет очень малую поверхность (поляризующийся электрод), а другой (анод) – большую (неполяризующийся электрод). Поляризующимся катодом является капли ртути, вытекающие из тонкого отверстия капиллярной трубки, а также платиновый (вращающийся), графитовый, серебряный и другие электроды. Неполяризующимся анодом является “данная” ртуть или стандартные электроды сравнения с большой поверхностью. Силу тока, при которой достигается полный разряд всех ионов анализируемого вещества, поступающих в приэлектродное пространство в следствие диффузии, называют предельным диффузионным током. Величина этого тока пропорциональна исходной концентрации определяемого вещества (ионов) в растворе.

Амперометрическая титрование , являющееся разновидностью полярографического анализа основано на изменении в процессе титрования раствора определяемого вещества величины предельно диффузионного тока, проходящего через раствор при постоянном напряжении между индикаторным поляризующимся электродом и неполяризующимся электродом сравнения.

Кулонометрия основана на изменении количества электричества, израсходованного на электролиз определенного количества вещества при постоянном потенциале, который соответствует потенциалу выделения данного элемента. В основе этого метода лежит закон Фарадея.

Метод титрования, в котором точка эквивалентности соответствует моменту, когда сила тока электролиза достигает величины “фонового” тока, называют кулонометрическим титрованием . Обычно сила фонового тока равна 0 , т.к. раствор в этот момент не содержит заряженных частиц.

Кондуктометрия основана на измерении электропроводимости анализируемых растворов, изменяющейся в результате химических реакций и зависящей от природы электролита, его температуры и концентрации раствора.

Метод титрования, при котором точку эквивалентности фиксирует по пересечению двух прямых, отражающих изменение эквивалентной электропроводимости исследуемого раствора по мере прибавления титранта в процессе титрования, называют кондуктометрическим титрованием .

Спектральные (оптические) методы анализа. К группе спектральных методов анализа относятся следующие методы.

Эмиссионный спектральный анализ – физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или изучения), возникающих под влиянием сильных источников возбуждений (электриче ской дуги, высоковольтной искры); этот метод дает возможность определять элементный состав вещества; т.е. судить о том, какие химические элементы входят в состав данного вещества.

Фотометрия пламени , являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества,

возникающих под влияние мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным образом щелочных и щелочноземельных металлов, а также некоторых других элементов, например, галлия, индия, таллия, свинца, марганца, меди, фосфора.

Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают спектрофотометрический

метод , основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которое соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод , основанный на определении спектра поглощения или измерений светопоглощения в видимом участке спектра.

Турбодиметрия основана на измерении интенсивности света, поглощаемого неокрашенной суспензией твердого вещества. В турбодиметрии интенсивность света, поглощенного раствором или прошедшего через него, измеряет также как в фотоколометрии окрашенных растворов.

Нефелометрия основана на измерении интенсивности света, отраженного или рассеянного окрашенной или неокрашенной суспензией твердого вещества (взвешенного в данной среде осадка).

Люминесцентный, или флуоресцентный, метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценцией) при облучении их ультрафиолетовыми лучами.

К оптическим методам анализа также относятся рефрактометрический метод, основанный на измерении коэффициента преломления, и поляриметрический, основанный на изу-

чении вращения плоскости поляризации.

Хроматографические методы анализа. По механизму разделения различают несколько видов хроматографических методов анализа.

Адсорбционная жидкостная хроматография основана на избирательной адсорбции (поглощении) отдельных компонентов анализируемой смеси в жидкой среде. Она обусловлена различной адсорбируемостью растворенных компонентов.

Адсорбционная газовая хроматография основана на использовании различия в адсорбируемости газов и паров. В за-

висимости от основного фактора, определяющего разделение, различают следующие виды газовой хроматографии: газо-жидкостную и газо-адсорбционную.

Распределительная хроматография основана на использовании различия в распределении (сорбируемости) отдельных компонентов анализируемой смеси между двумя несмешивающимися жидкими фазами – подвижным и неподвижным растворителями.

Бумажная хроматография - разновидность распределительной хроматографии, в которой носителем для неподвижного растворителя являются полоски или листы фильтровальной бумаги, не содержащей минеральных примесей.

Ионообменная хроматография основана на использовании ионообменных процессов, протекающих между подвижными полями адсорбента и полями электролита, содержащимися в анализируемом растворе.

Масс-спектрометрические методы анализа. Масс-спектрометриические методы анализа основаны на определении отдельных ионизированных атомов, молекул и радикалов посредством разделения истоков ионов, содержащих частицы с разным отношением массы к заряду в результате комбинированного действия электрического и магнитного полей.

Физико-химический анализ по Н.С. Курнакову. Метод, предложенный Н.С. Куржаковым, позволяет изучать фи-

зические свойства систем в зависимости от их химического состава. Например, для аналитических целей могут быть использованы кривые зависимости температуры плавления от состава свинцово-оловянного сплава.

Этот метод называется физико-химическим анализом. Не следует смешивать понятия “физико-химический метод анали-

за” с понятием “физико-химический анализ”.

Если в процессе нагревания или охлаждения исследуемого вещества в анализируемом объекте не наблюдаются фазовые превращения, связанные с выделением или поглощением

тепла, то кривые нагревания или охлаждения характеризуются плавным ходом. Если же в системе происходят фазовые превращения, то на кривой изменения температур в зависимости от характера этих превращений на протяжении некоторого промежутка времени наблюдаются горизонтальные участки при неизменной температуре или резкие перегибы кривой. Подобная кривая охлаждения дает возможность судить о всех фазовых превращениях, происходящих в исследуемом образце в процессе охлаждения.

Другие методы анализа. Метод электронного парамагнитного резонанса (ЭПР) - основан на использовании явления резонансного поглощения электромагнитных волн парамагнитными частицами в постоянном магнитном поле и успешно применяется для измерения концентрации парамагнитных веществ, исследования окислительно-восстановительных реакций, изучения химической кинетики и механизма химических реакций и т.п.

Метод ядерного магнитного резонанса (ЯМР) основан на использовании резонансного поглощения электромагнитных волн исследуемым веществом в постоянном магнитном поле, обусловленного ядерным магнетизмом. Метод ЯМР применяется для исследования комплексных соединений, состояния ионов в растворе, для изучения химической кинетики и т.п.

Заключение

Современная химия охватывает большую область человеческих знаний, поскольку является наукой, изучающей вещества и законы их превращения. Химия находится в непрерывном развитии и глубоко раскрывает основные законы, позволяющие определить поведение электронов в атомах и молекулах, разработать методы расчета структур молекул и твердых тел, теории химической кинетики и химического равновесия. Руководствуясь основными законами химической термодинамики, химия позволяет оценить направленность химических процессов и глубину их протекания. Важные сведения дает изучение кристаллического состояния веществ.

Эти вопросы позволят студентам освоить разделы химии, которые не изучались в средней школе или изучались частично.

Знания, приобретенные в данной части курса химии необходимы для изучения специальных разделов (свойства растворов, окислительно-восстановительные реакции, электрохимические процессы, физико-химические свойства веществ)

Базовые темы пособия могут быть полезными в деятельности специалистов любой отрасли техники. Понимание основных законов химии, умение работать с учебной и специальной литературой позволит специалистам находить оптимальные решения стоящих перед ними задач.

Так же представлены разделы химии, имеющие важное значение в практической деятельности специалистов радио- и электротехнического направления. Рассмотрены электрохимические процессы (работа гальванических элементов, электролиз), приведены примеры химических источников тока и технического применения электролиза.

Надежность и долговечность изделий электронной техники зависит от коррозионной устойчивости отдельных деталей приборов, поэтому в пособии рассмотрены основные закономерности коррозионных процессов, дана их классификация, представлены два механизма их протекания: химический и электрохимический, а также приведены способы и метоы защиты от химической и электрохимической коррозии.

На основе сведений, представленных в данном пособии, показаны некоторые физико-химические свойства металлов и полупроводников (электропроводность, магнитные свойства). Дано понятие о химической идентификации веществ на основе качественного и количественного методов анализа.

Знания необходимы при изучении последующих курсов, таких как материаловедение, сопротивление материалов, теоретические основы различных технологических процессов в электронике, электротехнике, микроэлектронике, радиотехнике, энергетике и других направлениях подготовки специалистов.

Научно-технический прогресс не возможен без развития химии, создающей новые вещества с новыми свойствами, которые могут быть использованы в различных отраслях промышленности.

Инструментальные методы анализа получили название благодаря применению соответствующих инструментов. По определению IUPAC (Международного Союза чистой и прикладной химии), инструментом называют устройство, которое используют для наблюдения определенного объекта, измерения или для сообщения данных о состоянии вещества. Устройство заменяет действия человека, дополняет или увеличивает его возможности.

В инструментальных методах анализа как инструменты применяют разного типа приборы, предназначенные для проведения основных процедур анализа, измерения физических и физико-химических свойств веществ, а также для регистрации результатов измерения. За счет современных компьютеризированных приборов чувствительность анализа может быть существенным образом повышена. Многие физико-химические свойства специфичны.

Все инструментальные (физические и физико-химические) методы основаны на измерении соответствующих физических величин, которые характеризуют определяемое вещество в анализируемом объекте.

Для каждого инструментального метода используют соответствующий аналитический сигнал. В таблице 1 приведенные примеры аналитических сигналов и соответствующих им методов, которые относятся к двум важнейшим группам - к электрохимическим методам анализа и оптическим методам анализа. К этим же группам относят и некоторые другие методы, не показанные в таблице. Например, к числу оптических методов относят люминесцентный, атомно-абсорбционные и другие спектроскопические методы, нефелометрию, турбидиметрию и поляриметрию.

Кроме электрохимических и оптических методов известны и другие группы методов. Так, например, методы, в которых измеряют радиоактивность, относят к ядерно-физическим методам. Используют также масс-спектрометрические методы, термические методы и др. Эта классификация условна и не является единственно возможной.

Зависимость аналитического сигнала от содержания определяемого вещества Х называют градуировочной функцией. Ее записывают как уравнение вида I = f (C) . В этом уравнении символом C обозначают содержание определяемого вещества Х , которое может быть выражено в разных единицах, например единицах количества вещества (моль), единицах массы (г, кг), единицах молярной концентрации (моль/дм 3). Эти единицы прямо пропорциональны между собой. Величину аналитического сигнала в общем случае обозначают символом I , хотя в отдельных методах используют специфические обозначения (см. табл. 1). В каждом методе градуировочные функции однотипные, но точный вид градуировочной функции для конкретной методики зависит от природы определяемого вещества Х и условий измерения сигнала. Так, во всех вариантах рефрактометрического анализа аналитическим сигналом является показатель преломления светового луча (n), который линейно зависит от содержания вещества Х в исследуемом растворе (I = n = a + k С). Это означает, что при рефрактометрическом определении любого вещества градуировочный график прямолинейный, но не проходит через начало координат (рис. 1). Численные же значения констант а и k зависят от того, какой компонент определяют и в каких условиях (растворитель, температура, длина волны) измеряют показатель преломления.

Таблица 1. Примеры инструментальных методов анализа

Электрохимические методы

Аналитический сигнал

Вид градуировочной функции

Первичный, I

Вторичный, I*

Кондуктометрия

Электрическое сопротивление, R

Электрическая проводимость, L

L = a + k

Потенциометрия

Э.Д.С. электрохимической каморки, Е

Потенциал электрода, Е

Е = a + lg b

Вольтамперометрия

Сила тока, i

Предельный диффузный ток, i d

i d = k

Кулонометрия

Количество электричества, Q

Электрогравиметрия

Масса продукта электролиза, m

Оптические методы

Аналитический сигнал

Вид градуировочной функции

Первичный, I

Вторичный, I*

Атомно-эмиссионный спектральный анализ

Фототок, i ;

относительное почернение, S

i = a C b

S = a + k lgC

Спектрофотометрия

Оптическая плотность, D

D = l C

Рефрактометрия

Показатель преломления, n

n = n - n o

n = n 0 + kC

Во многих методах зависимость сигнала от концентрации описывается нелинейными функциями, например, в люминесцентном анализе это показательная функция (I = kC n) , в потенциометрии - логарифмическая функция (Е = Е 0 + k lgС) і т.д. Несмотря на указанные отличия, все градуировочные функции похожи тем, что по мере возрастания величины C (содержание определяемого вещества Х ) величина сигнала изменяется беспрерывно, а каждому значению С отвечает только одно значение I .

Градуировочные функции устанавливают экспериментальным путём, используя стандартные образцы сравнения (эталоны), которые содержат различное точно известное количества определяемого вещества Х. Данные, полученные в результате измерения сигнала для каждого эталона, разрешают представить градуировочную функцию в виде таблицы, графика или алгебраической формулы. Если теперь измерять тем же прибором аналитический сигнал исследуемой пробы при тех же условиях, что и сигнал эталона, то по величине такого сигнала можно будет определить содержание Х в исследуемой пробе с помощью градуировочной функции.

Легко рассчитать результат анализа, если сигнал I прямо пропорционален содержанию определяемого вещества Х. Если же такой пропорциональной зависимости не существует, то непосредственно измеренный (первичный) аналитический сигнал I превращают во вторичный аналитический сигнал I *. Выбирают такой способ преобразования, чтобы вторичный аналитический сигнал I * был прямо пропорционален количеству определяемого вещества Х. Так, например, электрическое сопротивление раствора (R ) определённым образом зависит от концентрации растворённого электролита (С). Сопротивление анализируемого раствора легко измерить, но применять R как аналитический сигнал неудобно потому, что при возрастании С величина R уменьшается, причем нелинейно. Поэтому в кондуктометрическом анализе вторичным сигналом является электропроводность раствора L , которая связана с сопротивлением R следующей формулой:

Электропроводность раствора L пропорционально возрастает по мере роста концентрации растворённого сильного электролита. Кроме того, из всех значений L , полученных для однотипных растворов с разной концентрацией Х , можно отнять одну и ту же величину L 0 - электропроводность раствора, который не содержит Х. «Исправленная» величина электропроводности L * = L - L 0 не просто линейно зависит от концентрации Х , а прямо пропорциональная концентрации электролита в растворе, то есть L * = k C.


Рис. 1.1. Типичные градуировочные графики для некоторых инструментальных методов: 1 - рефрактометрия; 2 - люминесцентный анализ; 3 - потенциометрия

Такой приём называется вычитанием фона. В инструментальных методах его используют очень часто. Многие приборы перед началом измерения настраивают так, чтобы они сразу же показывали исправленный сигнал, прямо пропорциональный С. Шкалу такого прибора можно проградуировать прямо в единицах концентрации. Иногда для обеспечения линейности градуировочных графиков превращают не ординату, а абсциссу. Например, в потенциометрическом анализе откладывают по горизонтальной оси не содержимое Х , а его логарифм. А в некоторых вариантах спектрального анализа проводят двойное преобразование - логарифмируют и сигнал, и концентрацию, а потом строят прямолинейную графическую зависимость lgI от lgС .

 

Возможно, будет полезно почитать: