Геотермальная электроэнергия. Геотермальная электростанция. Недостатки геотермальных электростанций

Среди альтернативных источников геотермальная энергия занимает значительное место - ее так или иначе используют примерно в 80 странах по всему миру. В большинстве случаев это происходит на уровне строительства теплиц, бассейнов, применения в качестве лечебного средства или отопления.

В нескольких странах - в том числе США, Исландии, Италии, Японии и других - построены и работают электростанции.

Геотермальная энергия в целом подразделяется на две разновидности - петротермальную и гидротермальную. Первый тип использует как источник горячие горные породы. Второй - подземные воды.

Если свести все данные по теме в одну диаграмму, обнаружится, что в 99% случаев используется тепло пород, и только в 1% геотермальная энергия извлекается из подземных вод.

Петротермальная энергетика

На настоящий момент в мире достаточно широко используется тепло земных недр, причем преимущественно это энергия неглубоких скважин - до 1 км. С целью обеспечения электричеством, теплом или ГВС устанавливаются скважинные теплообменники, работающие на жидкостях с низкой температурой кипения (например, на фреоне).

Сейчас использование скважинного теплообменника является наиболее рациональным способом добычи тепла. Выглядит это так: теплоноситель циркулирует в замкнутом контуре. Нагретый поднимается по концентрично опущенной трубе, отдавая свое тепло, после чего, охлажденный, при помощи насоса подается в обсадную.

В основе использования энергии земных недр лежит природное явление - по мере приближения к ядру Земли растет температура земной коры и мантии. На уровне 2-3 км от поверхности планеты она достигает более 100 °С, в среднем увеличиваясь с каждым последующим километром на 20 °С. На глубине 100 км температура достигает уже 1300-1500 º-С.

Гидротермальная энергетика

Вода, циркулирующая на больших глубинах, нагревается до значительных величин. В сейсмически активных районах она поднимается на поверхность по трещинам в земной коре, в спокойных же регионах ее можно вывести с помощью скважин.

Принцип действия тот же: нагретая вода поднимается по скважине вверх, отдает тепло, и возвращается по второй трубе вниз. Цикл практически бесконечен и возобновляем до тех пор, пока в земных недрах остается тепло.

В некоторых сейсмически активных регионах горячие воды лежат так близко к поверхности, что можно воочию наблюдать, как работает геотермальная энергия. Фото окрестностей вулкана Крафла (Исландия) демонстрирует гейзеры, которые передают пар для действующей там ГеоТЭС.

Основные черты геотермальной энергетики

Внимание к альтернативным источникам обусловлено тем, что запасы нефти и газа на планете не бесконечны, и постепенно исчерпываются. Кроме того, они есть не везде, и многие страны зависят от поставок из других регионов. Среди иных важных факторов - негативное влияние ядерной и топливной энергетики на среду обитания человека и дикую природу.

Большое достоинство ГЭ - возобновляемость и универсальность: возможность использовать для водо- и теплоснабжения, или для выработки электроэнергии, или для всех трех целей сразу.

Но главное - это геотермальная энергия, плюсы и минусы которой зависят не столько от местности, сколько от кошелька заказчика.

Достоинства и недостатки ГЭ

В числе преимуществ этого вида энергии следующие:

  • она возобновляемая и практически неиссякаемая;
  • независима от времени суток, сезона, погоды;
  • универсальна - с ее помощью можно обеспечить водо- и теплоснабжение, а также электричество;
  • геотермальные источники энергии не загрязняют окружающую среду;
  • не вызывают ;
  • станции не занимают много места.

Однако имеются и недостатки:

  • геотермальная энергия не считается полностью безвредной из-за выбросов пара, в составе которого могут быть сероводород, радон и другие вредные примеси;
  • при использовании воды с глубоких горизонтов стоит вопрос ее утилизации после использования - из-за химического состава такую воду нужно сливать либо обратно в глубокие слои, либо в океан;
  • постройка станции относительно дорога - это удорожает и стоимость энергии в итоге.

Сферы применения

На сегодняшний день геотермальные ресурсы используются в сельском хозяйстве, садоводстве, аква- и термокультуре, промышленности, сфере жилищно-коммунальных хозяйств. В нескольких странах построены крупные комплексы, обеспечивающие население электроэнергией. Продолжается разработка новых систем.

Сельское хозяйство и садоводство

Чаще всего использование геотермальной энергии в сельском хозяйстве сводится к обогреву и поливу оранжерей, теплиц, установок аква- и гидрокультуры. Подобный подход применяется в нескольких государствах - Кении, Израиле, Мексике, Греции, Гватемале и Теде.

Подземные источники применяются для полива полей, обогрева почвы, поддержания постоянной температуры и влажности в оранжерее или теплице.

Промышленность и ЖКХ

В ноябре 2014 года в Кении начала работать крупнейшая на то время геотермальная электростанция мира. Вторая по размерам находится в Исландии - это Хеллишейди, берущая тепло от источников возле вулкана Хенгидль.

Другие страны, использующие геотермальную энергию в промышленных масштабах: США, Филиппины, Россия, Япония, Коста-Рика, Турция, Новая Зеландия и т. д.

Известны четыре основные схемы добывания энергии на ГеоТЭС:

  • прямая, когда пар направляется по трубам в турбины, соединенные с электрогенераторами;
  • непрямая, аналогичная предыдущей во всем, за исключением того, что перед попаданием в трубы пар очищается от газов;
  • бинарная - в качестве рабочего тепла используется не вода или пар, а другая жидкость, имеющая низкую температуру кипения;
  • смешанная - аналогична прямой, но после конденсации здесь удаляют из воды не растворившиеся газы.

В 2009 году группа исследователей, искавшая пригодные к использованию геотермальные ресурсы, достигла расплавленной магмы всего на глубине 2,1 км. Подобное попадание в магму - большая редкость, это всего второй известный случай (предыдущий произошел на Гавайях в 2007 году).

Хотя соединенная с магмой труба ни разу не подключалась к находящейся неподалеку ГеоТЭС Крафла, ученые получили весьма многообещающие результаты. До сих пор все работающие станции брали тепло опосредованно, из земных пород либо из подземных вод.

Частный сектор

Одна из наиболее перспективных сфер - частный сектор, для которого геотермальная энергия - это реальная альтернатива автономного газового отопления. Самая серьезная преграда здесь - при довольно дешевой эксплуатации высокая начальная стоимость оборудования, которая значительно выше, чем цена установки «традиционного» отопления.

Свои разработки для частного сектора предлагают компании MuoviTech, Geodynamics Ltd, Vaillant, Viessmann, Nibe.

Страны, использующие тепло планеты

Безусловным лидером в использовании георесурсов является США - в 2012 году выработка энергии в этой стране достигла отметки 16.792 миллиона мегаватт-часов. В том же году, суммарная мощность всех геотермальных станций на территории Штатов достигала 3386 МВт.

ГеоТЭС на территории США расположены в штатах Калифорния, Невада, Юта, Гавайи, Орегон, Айдахо, Нью-Мехико, Аляска и Вайоминг. Самая крупная группа заводов носит название «Гейзеры» и расположена неподалеку от Сан-Франциско.

Кроме Соединенных Штатов, в первой десятке лидеров (по состоянию на 2013 год) также находятся Филиппины, Индонезия, Италия, Новая Зеландия, Мексика, Исландия, Япония, Кения и Турция. При этом в Исландии геотермальные источники энергии обеспечивают 30% от всей потребности страны, на Филиппинах - 27%, а в США - меньше 1%.

Потенциальные ресурсы

Работающие станции - только начало, отрасль лишь начинает развиваться. Исследования в этом направлении идут постоянно: более чем в 70 странах ведется разведка потенциальных месторождений, в 60 освоено промышленное использование ГЭ.

Перспективными выглядят сейсмически активные районы (как это видно на примере Исландии) - штат Калифорния в США, Новая Зеландия, Япония, страны Центральной Америки, Филиппины, Исландия, Коста-Рика, Турция, Кения. Эти страны имеют потенциально выгодные не исследованные месторождения.

В России это Ставропольский край и Дагестан, остров Сахалин и Курильские о-ва, Камчатка. В Беларуси определенный потенциал есть на юге страны, охватывая города Светлогорск, Гомель, Речица, Калинковичи и Октябрьский.

На Украине перспективными являются Закарпатская, Николаевская, Одесская и Херсонская области.

Достаточно перспективным является полуостров Крым, тем более что большая часть потребляемой им энергии импортируется извне.


Внимание, только СЕГОДНЯ!

В недрах земли находится большое сокровище. Это не золото, не серебро и не драгоценные камни - это огромный запас геотермальной энергии.
Большая часть этой энергии заключена в слоях расплавленных пород, называемых магмой. Тепло Земли - настоящее сокровище, поскольку это чистый источник энергии, и он имеет преимущества перед энергией нефти, газа и атома.
Глубоко под землей температура достигает сотен и даже тысяч градусов по Цельсию. Предполагают, что количество подземного тепла, выходящего каждый год на поверхность, в пересчете на мегаватт-часы составляет 100 миллиардов. Это во много раз превышает количество электроэнергии, потребляемой во всем мире. Какая сила! Однако укротить ее совсем не просто.

Как добраться до сокровища
Какое-то количество тепла находится в почве, даже недалеко от поверхности Земли. Его можно извлечь при помощи тепловых насосов, подсоединенных к трубам, проложенным под землей. Энергию земных недр можно использовать как для обогрева домов зимой, так и для других целей. Люди, живущие неподалеку от горячих источников или в районах, где происходят активные геологические процессы, нашли и другие способы применения тепла Земли. В древности римляне, например, использовали тепло горячих источников для бань.
Но большая часть тепла сосредоточена под земной корой в слое, называемом мантией. Средняя толщина земной коры составляет 35 километров, и современные бурильные технологии не позволяют проникнуть на такую глубину. Однако земная кора состоит из многочисленных плит, и в некоторых местах, особенно на месте их стыка, она тоньше. В этих местах магма поднимается ближе к поверхности Земли и нагревает воду, попавшую в пласты горных пород. Эти пласты обычно залегают на глубине всего лишь двух-трех километров от поверхности Земли. При помощи современных бурильных технологий проникнуть туда вполне по силам. Энергию геотермальных источников можно извлечь и с пользой применять.

Энергия на службе у человека
На уровне моря вода превращается в пар при температуре 100 градусов по Цельсию. Но под землей, где давление намного выше, вода остается в жидком состоянии и при более высоких температурах. Точка кипения воды повышается до 230, 315 и 600 градусов по Цельсию на глубине 300, 1 525 и 3 000 метров соответственно. Если температура воды в пробуренной скважине выше 175 градусов по Цельсию, то эту воду можно использовать для работы электрогенераторов.
Вода высоких температур обычно встречается в районах недавней вулканической активности, например в Тихоокеанском геосинклинальном поясе - там, на островах Тихого океана, много действующих, а также потухших вулканов. Филиппины находятся в этой зоне. И в последние годы эта страна достигла значительных успехов в использовании геотермальных источников для производства электроэнергии. Филиппины стали одним из самых крупных в мире производителей геотермальной энергии. Более 20 процентов всего электричества, потребляемого страной, получают таким способом.
Чтобы больше узнать о том, как используют запасы тепла Земли для производства электричества, посетите большую геотермальную электростанцию Мак-Бан в филиппинской провинции Лагуна. Мощность электростанции составляет 426 мегаватт.

Геотермальная электростанция
Дорога ведет к геотермальному полю. Приближаясь к станции, попадаете в целое царство больших труб, по которым пар из геотермальных колодцев поступает к генератору. Пар по трубам идет и с расположенных неподалеку холмов. Через определенные промежутки огромные трубы согнуты в специальные петли, позволяющие им расширяться и сжиматься при нагревании и охлаждении.
Рядом с этим местом находится офис компании "Philippine Geothermal, Inc.". Недалеко от офиса находится несколько эксплуатационных скважин. На станции используется тот же метод бурения, что и при нефтедобыче. Разница лишь в том, что эти скважины больше в диаметре. Колодцы становятся трубопроводами, через которые горячая вода и пар под давлением поднимаются к поверхности. Именно такая смесь поступает на электростанцию. Вот два колодца, расположенные очень близко. Они сближаются только у поверхности. Под землей один из них уходит вертикально вниз, а другой направляют сотрудники станции по своему усмотрению. Так как земля дорогая, то такое расположение очень выгодно - буря колодцы близко друг к другу, экономятся средства.
На этой площадке применяется "технология мгновенного испарения". Глубина самого глубокого колодца здесь 3 700 метров. Горячая вода находится под высоким давлением глубоко под землей. Но когда вода поднимается к поверхности, давление падает, и большая часть воды мгновенно превращается в пар, отсюда и название.
По трубопроводу вода поступает в сепаратор. Здесь пар отделяется от горячей воды или геотермального рассола. Но и после этого пар еще не готов для поступления в электрогенератор - капли воды остаются в потоке пара. В этих каплях есть частицы веществ, которые могут попасть в турбину и повредить ее. Поэтому после сепаратора пар попадает в газоочиститель. Здесь пар очищается от этих частиц.
По большим трубам, покрытым изоляцией, очищенный пар поступает на электростанцию, расположенную приблизительно в километре отсюда. Прежде чем пар попадает в турбину и приводит в движение генератор, его пропускают еще через один газоочиститель, чтобы удалить образовавшийся конденсат.
Если подняться на вершину холма, то взору откроется вся геотермальная площадка.
Общая площадь этого участка около семи квадратных километров. Здесь находятся 102 колодца, из них 63 - эксплуатационные скважины. Многие другие используются, чтобы закачивать воду обратно в недра. Каждый час перерабатывается такое огромное количество горячей воды и пара, что необходимо возвращать отделенную воду обратно в недра, чтобы не наносить вреда окружающей среде. А также этот процесс помогает восстановлению геотермального поля.
Как геотермальная электростанция влияет на вид местности? Больше всего о ней напоминает пар, выходящий из паровых турбин. Вокруг электростанции растут кокосовые пальмы и другие деревья. В долине, расположенной у подножия холма, построено много жилых домов. Следовательно, при правильном использовании геотермальная энергия может служить людям, не нанося вреда окружающей среде.
На данной электростанции для производства электроэнергии используют только высокотемпературный пар. Однако не так давно попробовали получать энергию при помощи жидкости, температура которой ниже 200 градусов по Цельсию. И в итоге появилась геотермальная электростанция с двойным циклом. В ходе работы горячая пароводяная смесь используется для превращения в газообразное состояние рабочей жидкости, которая, в свою очередь, приводит в движение турбину.

Плюсы и минусы
Использование геотермальной энергии имеет много плюсов. Страны, где она применяется, меньше зависят от нефти. Каждые десять мегаватт электроэнергии, получаемые на геотермальных электростанциях ежегодно, помогают экономить 140000 баррелей сырой нефти в год. К тому же геотермальные ресурсы огромны, и опасность их истощения во много раз ниже, чем в случае со многими другими энергетическими ресурсами. Использование геотермальной энергии решает проблему загрязнения окружающей среды. К тому же ее себестоимость довольно низкая по сравнению со многими другими видами энергии.
Есть несколько минусов экологического характера. В геотермальном паре обычно содержится сероводород, который в больших количествах ядовит, а в небольших - неприятен из-за запаха серы. Однако системы, удаляющие этот газ, эффективны и более действенны, чем системы понижения токсичности выхлопа на электростанциях, работающих на ископаемом топливе. Кроме того, частицы в пароводяном потоке иногда содержат небольшое количество мышьяка и других ядовитых веществ. Но при закачивании отходов в землю опасность сводится до минимума. Беспокойство может вызывать и возможность загрязнения грунтовых вод. Чтобы этого не произошло, геотермальные колодцы, пробуренные на большую глубину, должны быть "одеты" в каркас из стали, и цемента.

Недостатки геотермальных электростанций

  • Найти подходящее место для строительства геотермальной электростанции и получить разрешение местных властей и согласие жителей на ее возведение может быть проблематичным.
  • Иногда действующая геотермальная электростанция может остановиться в результате естественных изменений в земной коре. Кроме того, причиной ее остановки может стать плохой выбор места или чрезмерная закачка воды в породу через нагнетательную скважину.
  • Через эксплуатационную скважину могут выделяться горючие или токсичные газы или минералы, содержащиеся в породах земной коры. Избавиться от них достаточно сложно. Правда, в некоторых случаях их можно сифонировать (собрать) и переработать в горючее (нефть-сырец или природный газ, например).

Вопрос

Можно ли построить небольшую геотермальную электростанцию, способную обеспечить электричеством дом или небольшой поселок?

Ответ

Это можно осуществить в районах, где не нужно бурить глубокие дорогие скважины. Наиболее показательным примером является, пожалуй, Исландия, которая, по сути, находится на вершине гигантского вулкана. На территории США среди таких районов можно назвать территории вокруг Йеллоустоуна, Термополиса и Саратоги в штате Вайоминг и вокруг города Хот Спрингс в Южной Дакоте (В России наиболее известным регионом с высоким потенциалом для геотермальной энергетики считается Камчатка.).

Геотермальные электростанции (ГеоЭС) - разновидность альтернативной энергетики. ГеоЭС получают электрическую энергию за счёт геотермальных источников недр Земли - гейзеров, открытых и подземных горячих источников воды или метана, теплых сухих пород, магмы. Поскольку геологическая активность происходит на планете регулярно, геотермальные источники можно условно считать неисчерпаемыми (возобновляемыми). По подсчётам ученых тепловая энергия Земли составляет 42 триллиона Ватт, 2% из которых (840 миллиардов) содержится в земной коре и доступна для добычи, однако и этой цифры достаточно, чтобы обеспечить население Земли неиссякаемой энергией на долгие годы.

Регионы с геотермальной активностью имеются во многих частях планеты, и идеальными для построения станций считаются районы с высокой геологической активностью (вулканической, сейсмической). Наиболее активное развитие отрасли происходит в местах скопления горячих гейзеров, а также в областях вокруг краёв литосферных плит в силу наименьшей толщины земной коры.

Для получения тепла из закрытых подземных источников используется бурение скважин. При углублении скважины температура повышается примерно на 1 градус каждые 36 метров, но есть и более высокие показатели. Полученное тепло доставляется на поверхность станции в виде горячей воды или пара, они могут применяться как для прямой подачи на отопительные системы домов и помещений, так и для последующего преобразования в электроэнергию на станции.

В зависимости от состояния среды (вода, пар) используется три способа получения электроэнергии - прямой, непрямой и смешанный. При прямом используется сухой пар, воздействующий на турбину генератора напрямую. При непрямом используется (наиболее популярен в настоящее время) очищенный и нагретый водяной пар, получаемый испарением воды, закачиваемой из подземных источников температурой до 190 градусов. Как видно из представленного рисунка - перегретый пар по добывающим скважинам поднимается к теплообменнику. В нем происходит передача тепловой энергии в закрытый контур паровой турбины. Полученный от закипания жидкости пар вращает турбину, после чего снова конденсируется в теплообменнике, что образует замкнутую и практически безвредную для атмосферы систему. Паровая турбина соединена с электрогенератором, с которого и получают электроэнергию. При смешанном способе применяют промежуточные легко-вскипаемые жидкости (фреон и др.), на которые воздействуют кипящей водой из источников.

Преимущества геотермальных электростанций:

1) Станции не требуют внешнего топлива для работы;

2) Практически неисчерпаемые запасы энергии (если соблюдать необходимые условия);

3) Возможность автоматизированной и автономной работы за счёт использования собственно-выработанного электричества;

4) Относительная дешевизна обслуживания станций;

5) Станции можно использовать для опреснения воды при расположении их на побережье океана или моря.

Геотермальные электростанции - недостатки:

1) Выбор места установки станции зачастую затруднён политическими и социальными аспектами;

2) Проектирование и строительство ГеоЭС может потребовать очень больших вложений;

3) Загрязнение атмосферы периодическими выбросами через скважину вредных веществ, содержащихся в коре (современные технологии позволяют частично преобразовывать эти выбросы в топливо), однако оно значительно ниже, чем при производстве электроэнергии из ископаемых источников;

4) Нестабильность естественных геологических процессов и, как следствие, периодическая остановка работы станций.

Первая геотермальная электростанция

Первые эксперименты с добычей энергии из геотермальных источников относятся к началу 20 века (1904 год, Италия, где спустя небольшое время была также построена первая полноценная геотермальная электростанция). В настоящее время, с учётом быстрого роста потребления электричества и быстрого иссякания запасов традиционного энергетического сырья, это одна из наиболее перспективных отраслей энергетики.

Крупнейшие геотермальные электростанции

Лидерами получения геотермальной энергии сейчас являются США и Филиппины, где построены самые крупные ГеоЭС, производящие более 300 МВт энергии каждая, что достаточно для энергоснабжения крупных городов.

Геотермальные электростанции в России

В России отрасль развита меньше, но и здесь идёт активное развитие. Самыми перспективными регионами страны являются Курильские острова и Камчатка. Крупнейшая геотермальная электростанция страны - Мутновская ГеоЭС на юго-востоке Камчатки, производящая до 50 МВт энергии (в перспективе - до 80 МВт). Также следует отметить Паужетскую (первая, построенная в России), Океанскую и Менделеевскую ГеоЭС.

С каждым годом добыча углеводородного топлива усложняется все больше: «верховые» запасы практически истощены, а для бурения глубоких скважин требуются не только новые технологии, но и значительные финансовые вложения. Соответственно дорожает и электричество, ведь оно в основном получается за счет переработки углеводородного топлива.

Кроме того, проблема охраны окружающей среды от негативного воздействия промышленности приобретает все большее значение. И уже очевидно: сохраняя традиционные методы получения энергии (с помощью углеводородного топлива) человечество движется к энергетическому кризису в сочетании с экологической катастрофой.

Именно поэтому такое значение приобретают технологии, позволяющие получать тепло и электричество из возобновляемых источников. К таким технологиям относится и геотермальная энергетика, которая позволяет получать электрическую и/или тепловую энергию, используя тепло, содержащееся в земных недрах.

Какими бывают геотермальные источники энергии

Чем глубже в землю – тем теплее. Это аксиома, известная каждому. Земные недра содержат океаны тепла, которым человек может воспользоваться, не нарушая экологию окружающей среды. Современные технологии позволяют эффективно использовать геотермальную энергию либо напрямую (тепловая энергия), либо с преобразованием в электрическую (геотермальная электростанция).

Геотермальные источники энергии подразделяются на два вида: петротермальные и гидротермальные. Петротермальная энергетика основана на использовании разницы температур грунта на поверхности и в глубине, а гидротермальная использует повышенную температуру грунтовых вод.

Сухие высокотемпературные породы распространены более, чем горячие водные источники, но их эксплуатация с целью получения энергии связана с определенными сложностями: в породы необходимо закачивать воду, а затем отбирать тепло у перегретой в высокотемпературных породах воды. Гидротермальные источники сразу «поставляют» перегретую воду, у которой можно взять тепло.

Еще один вариант получения термальной энергии – отбор низкотемпературного тепла на небольших глубинах (тепловые насосы). Принцип работы теплового насоса такой же, как и промышленных установок, работающих в термальных зонах, разница лишь в том, что в качестве теплоносителя в этом виде оборудования используется специальный хладо-агент с низкой температурой кипения, что и позволяет получать тепловую энергию, перераспределяя низкотемпературное тепло.

С помощью тепловых насосов можно получать энергию для отопления небольших домов, коттеджей. Такие устройства практически не используются для промышленного получения тепловой энергии (относительно невысокие температуры препятствуют промышленному использованию), однако, хорошо зарекомендовали себя при организации автономного энергоснабжения частных домов, особенно в местах, где установка линий электропередач затруднительна. При этом для эффективной работы теплового насоса достаточно температуры грунта или грунтовых вод (в зависимости от вида используемого оборудования) около +8°С, то есть, достаточно небольшой глубины для устройства внешнего контура (глубина редко превышает 4 м).

Вид получаемой из геотермального источника энергии зависит от его температуры: из низко- и средне-температурных источников тепло используется в основном для обеспечения горячего водоснабжения (в том числе и для теплоснабжения), а тепло из высоко-температурных источников используется для получения электроэнергии. Также возможно использование тепла высоко-температурных источников для одновременного получения электроэнергии и горячего водоснабжения. Геотермальные электростанции в основном используют гидротермальные источники – температура воды в термальных зонах может значительно превышать точку кипения воды (в некоторых случаях перегрев достигает 400°С – за счет повышенного давления в глубинах), что делает выработку электроэнергии очень эффективной.

Плюсы и минусы геотермальной энергетики

Геотермальные источники энергии представляют огромный интерес в первую очередь из-за того, что являются возобновляемыми ресурсами, то есть, практически неиссякаемыми. А вот углеводородное топливо, которое в настоящее время является основным источником для получения различных видов энергии, является ресурсом не возобновляемым, и по прогнозам весьма даже ограниченным. К тому же, получение геотермальной энергии гораздо более экологично, чем традиционные методы на основе углеводородного топлива.

Если сравнивать геотермальную энергетику с другими альтернативными видами получения энергии, то и здесь имеются преимущества. Так, геотермальная энергия не зависит от внешних условий, на нее не оказывает влияние температура окружающей среды, время суток, время года и так далее. В то же время ветро-, гелио- и гидроэнергетика, так же, как и геотермальная энергетика работающие с возобновляемыми и неиссякаемыми источниками энергии, очень зависимы от окружающей среды. Например, эффективность гелио-станций находится в прямой зависимости от уровня инсоляции на местности, который зависит не только от широты, но и от времени суток и времени года, причем, разница весьма и весьма существенная. То же и с остальными видами альтернативной энергетики. А вот эффективность геотермальной электростанции зависит исключительно от температуры термального источника и остается неизменной, независимо от времени года и погоды за окном.

К плюсам относится и высокий КПД геотермальных станций. Например, при использовании геотермальной энергии для получения тепла, КПД превышает 1.

Одним из основных минусов при получении энергии из гидротермальных источников является необходимость закачки отработанной (охлажденной) воды в подземные горизонты, что снижает эффективность геотермальной электростанции и увеличивает эксплуатационные расходы. Сброс этой воды в приповерхностные и поверхностные воды исключен, так как в ней содержится большое количество токсичных веществ.

Также к недостаткам можно отнести ограниченное количество пригодных к эксплуатации термальных зон. С точки зрения получения недорогой энергии, особенно интересны гидротермальные месторождения, в которых перегретая вода и/или пар находятся достаточно близко к поверхности (глубинное бурение скважин для достижения термальной зоны значительно повышает эксплуатационные расходы и удорожает получаемую энергию). Таких месторождений не так и много. Тем не менее, постоянно ведется активная разведка новых месторождений, открываются новые термальные зоны, и количество энергии, получаемой из геотермальных источников, постоянно увеличивается. В некоторых странах гидротермальная энергетика составляет до 30% всей энергетики (к примеру, Филиппины, Исландия). В России также имеется ряд эксплуатируемых термальных зон, и их количество возрастает.

Перспективы геотермальной энергетики

Ожидать, что промышленная геотермальная энергетика сможет заменить традиционные в настоящий момент источники получения энергии сложно – хотя бы из-за ограниченности термальных зон, сложностей глубинного бурения и так далее. Тем более, что имеются другие альтернативные виды энергии, доступные в любой точке земного шара. Однако, геотермальная энергетика занимает и будет занимать существенное место в способах получения энергии различного вида (электрической и/или тепловой).

При этом, перспектив у геотермальной энергетики, основанной на перераспределении тепла из низкотемпературных источников, гораздо больше. Этот вид геотермальной энергетики не требует наличия термальных зон с перегретой водой, паром или сухой породой. Тепловые насосы все больше входят в моду и активно устанавливаются при строительстве современных коттеджей и так называемых «активных» домов (домов с автономными источниками энергоснабжения). Судя по имеющимся тенденциям, геотермальная энергетика продолжит активное развитие в «малых» формах – для автономного энергоснабжения отдельных домов или хозяйств, наряду с ветро- и гелиоэнергетикой.

София Варган

 

Возможно, будет полезно почитать: