Установка ультрафильтрации воды. Ультрафильтрация сточных вод. Особенности ультрафильтрации сточных вод

Ни для кого не секрет, что избавиться от механических примесей и осадков в воде можно при помощи ее очищения. И чем меньше частицы, тем сложнее их удалять. Еще не так давно нельзя было удалить коллоидные частицы, не применив специальные реагенты-коагулянты, а механическое удаление микроорганизмов представлялось и вовсе невозможным. Но благодаря современным технологиям все изменилось. О том, что представляет собой система ультрафильтрации воды, о ее особенностях, достоинствах и недостатках вы узнаете из нашей статьи.

Из этой статьи вы узнаете:

    Что такое система ультрафильтрации воды

    Что дает система ультрафильтрации воды

    Какие преимущества имеет система ультрафильтрации воды

    Какие недостатки присущи системе ультрафильтрации воды

Что представляет собой система ультрафильтрации воды

Ультрафильтрацией воды называется метод ее очистки, который заключается в пропускании воды через мембрану с размером пор 0,002–0,1 мкм под определенным давлением. Системы ультрафильтрации воды позволяют ликвидировать взвешенные частицы больше 0,01 мкм (коллоидные примеси, бактерии, вирусы, органические макромолекулы) из водных жидкостей муниципальных и локальных водопроводов (артезианских скважин, колодцев и т. п. – как и в случае использования фильтров очистки воды от железа).

Ультрафильтрация воды – эффективный, не очень затратный и экологически чистый способ очищения от субмикронных механических примесей. В современных системах ультрафильтрации воды используют волокна, состоящие из пор величиной примерно 0,01 мкм.

– процесс мембранного разделения, а также концентрирования растворов. Процедура ультрафильтрации проводится под воздействием разницы давлений, предшествующих и последующих ее установке. Ультрафильтрация подобна системам обратного осмоса, в том числе и по аппаратному исполнению. Но требований к отводу от мембранной поверхности концентрированного раствора гораздо больше. Схема проведения рассматриваемого процесса, условно говоря, находится между механическим фильтрованием и обратным осмосом.

Применимость ультрафильтрационных систем намного шире, чем систем обратного осмоса и фильтров удаления железа, ведь ультрафильтрация позволяет решить вопрос фракционирования (селективного удаления частиц). Ультрафильтрация применяется для разделения систем, в которых молекулярная масса растворенных компонентов намного больше молекулярной массы растворителя.


При проверке воды систему ультрафильтрации используют в тех случаях, когда молекулярная масса хотя бы одного составляющего компонента смеси имеет значение от 500 и более. Наряду с системами обратного осмоса принцип действия ультрафильтрации основан на разности давлений. Процесс ультрафильтрации протекает при давлении 0,1–1МПа. Можно также воспользоваться системой умягчения воды – она позволяет добиться наилучшего состава данной жидкости.

К числу недостатков системы ультрафильтрации воды относят: небольшой технологический диапазон, поскольку проведение процедуры возможно только при доскональном соблюдении всех условий (давления, температуры, состава растворителя и т. д.); невозможность продолжительного использования мембран (1–3 года) из-за образования осадков на поверхности, а также в самих порах, в результате чего мембраны засоряются и реструктурируются.

По сравнению с ультрафильтрацией, очистка воды от железа – более экономичная процедура. Мембрана, применяемая в системах ультрафильтрации воды, блокирует прохождение твердых частиц, бактерий, вирусов, эндотоксинов и т. д., благодаря чему степень чистоты полученной жидкости получается очень высокой. Данная процедура широко используется в целях предварительной очистки поверхностных, морских вод, биологической обработки муниципальных сточных вод.

Половолоконные мембраны позволяют проводить ультрафильтрацию воды следующими способами:

    «Cross-flow» – жидкость делится на фильтрат и концентрат, который сливается в дренаж;

    «Dead-end» – процедура фильтрации сквозь волокна прерывается прямыми и/или обратными промывками, что способствует уменьшению расхода воды.

Что дает система ультрафильтрации воды в процессе водоочистки

Осветление воды

При появлении новой разработки очищения питьевой воды главными критериями оценки становятся: характеристики получаемой пробы и количество затраченных в ходе данного процесса ресурсов. Система ультрафильтрации воды достаточно компактна, не требует сложного ухода и большого расхода химических реагентов, благодаря чему у полученной в результате осветленной воды невысокая себестоимость и отличное качество. При ультрафильтрации на себестоимость воды непосредственное влияние оказывают мощность системной установки и качество исходного сырья.

Небольшие коммерческие установки (производительность меньше 100 м 3 /ч) позволяют получить осветленную воду, себестоимость которой равна 1,5–3,5 руб/м 3 . А крупные (с производительностью больше 100 м 3 /ч) – аналогичный показатель, значения которого не превышают 0,5–2,0 руб/м 3 .

Рассмотрим преимущества применения ультрафильтрационных мембран по сравнению с альтернативными технологиями:

    небольшое рабочее давление (1–2 атм) и высокая эффективность ультратонкой фильтрации;

    уменьшение себестоимости полученной воды в пять раз;

    компактность конструкций, позволяющая занимать в три раза меньшую площадь;

    требует гораздо меньшего количества реагентов (более чем в 10 раз);

    позволяет в два раза снизить расход потребляемой воды;

    требует в два раза меньше энергетических затрат;

    несложная система автоматизации;

    позволяет достичь стопроцентного удаления взвешенных веществ;

    практически полностью дезинфицирует (удаление 99,99 % бактерий и вирусов);

    осветляет воду (уменьшает мутность и цветность);

    отлично очищает жидкость от железа и марганца;

    удаляет коллоидный кремний и органические вещества;

    способствует ультратонкой очистке (степень фильтрации 0,01 микрон);

    сохраняет солевой состав водной жидкости;

    позволяет снизить капитальные расходы на строительство здания для размещения нового оборудования.

Дезинфекция воды

Использование стандартных элементов системы ультрафильтрации воды позволяет избавиться от 99,99 % бактерий и вирусов, что характеризует данный метод как высоко технологичный и эффективный. В сравнении с традиционными способами дезинфекции (ультрафиолетовым обеззараживанием, хлорированием, озонированием, дозацией диоксида хлора и т. д.), ультрафильтрация способствует физическому удалению микроорганизмов из жидкости.

Это происходит из-за того, что размер пор мембраны, используемой в системе ультрафильтрации, намного меньше вирусов и бактерий (вирус – 0,02–0,4 мкм, бактерия – 0,4–1,0 мкм, пора – 0,01 мкм). То есть частицы вредных веществ не могут просочиться через такие маленькие отверстия в мембранном полотне. При ультрафильтрации в хлорировании воды нет необходимости, а процедура обеззараживания проводится перед подачей воды для потребления.


Работа с ионообменными фильтрами

Использование ионообменных фильтров (особенно в энергетическом и промышленном комплексе) иногда сопровождается некоторыми сложностями. В ходе разработки проектов систем фильтрации воды гранулометрическая структура жидкости практически не учитывается. Осветлительные и микрофильтрационные фильтры предварительной очистки эффективны для отделения взвешенных частичек, величина которых превышает 1,0 мкм.

Частицы меньшего размера (0,1–1,0 мкм) блокируются при помощи ионообменных смол, однако «закупоривания» не избежать. В итоге – уменьшение динамичности ионообмена, а также понижение результативности воздействия смол. Предотвратить процесс можно путем уменьшения мутности исходной водной жидкости ниже трех нефелометрических единиц мутности (NTU). Использование системы ультрафильтрации воды позволяет добиться мутности, равной 0,1 NTU.

Процесс ионного обмена может затрудняться из-за содержащихся в водной жидкости коллоидов SiO 2 (встречаются в артезианской и речной воде). Запуск процесса полимеризации SiO 2 (объединения молекул в длинные цепочки) наступает, если значение рН меньше 7 (после H-катионирования). Убрать такие образования с поверхности смолы довольно сложно: потребуются промывки (долго и неэффективно) и восстановление фильтров ионного обмена.

Если применить систему ультрафильтрации воды до указанных фильтров, то можно добиться удаления 95 % (в некоторых случаях – более 98 %) коллоидов SiO 2 , препятствуя тем самым «закупориванию» ионитов. Смолы могут «забиваться» и по причине увеличения числа бактерий, что очень актуально для систем с участками, которые не обрабатываются химическими растворами.

Бывают и случаи, когда клапаны, уплотнения и необработанные поверхности, вступающие в контакт с водой, далеки от соответствия нормам технических и санитарных стандартов. Наличие некоторых условий на этих участках (температуры и уровня рН) положительно влияет на появление биологических микроорганизмов. Процедура ультрафильтрации значительно затормаживает развитие данного процесса на поверхности смол.

Работа с фильтрами обратного осмоса

Для работы систем обратного осмоса в качестве предварительных фильтров обычно применяют мешочные или патронные фильтры, рейтинг фильтрации которых приравнивается 5 мкм. Замена их ультрафильтрацией позволит уменьшить статью эксплуатационных расходов, поскольку длительность использования возрастет.

Это объясняется стабилизацией коллоидного индекса SDI на уровне 1-2 новыми модулями, которые позволят сократить частоту промывок и смену мембран обратного осмоса.

При использовании осветлителей и коагулянтов на этапе предварительной фильтрации воды перед обратным осмосом следует внимательно выбирать вещества, вызывающие процессы флокуляции и коагуляции. Отрицательный заряд мембран обратного осмоса делает применение катионных флокулянтов невозможным.

Анионные и неионогенные флокулянты могут применяться при минимальных дозах. Вернуть мембрану в работу после блокировки пор флокулянтом довольно сложно. При использовании системы ультрафильтрации воды такой проблемы не возникает.

Системы ультрафильтрации воды: преимущества и недостатки

Достоинства ультрафильтрации:

    Система ультрафильтрации считается новейшей разработкой, заинтересованность в которой увеличивается не только благодаря хорошим результатам очистки. На растворы в установке ультрафильтрации не оказывается термического и химического воздействия (по сравнению с процедурой флотации воды), то есть при этом методе очистки можно использовать растворы, чувствительные к температурному воздействию.

    Результаты соотношения отличных показателей эффективности и энергии, потраченной на их получение, действительно впечатляют (например, на дистилляцию требуется от 20 до 60 % больше электроэнергии). В этом плане ультрафильтрация – наименее затратный способ. Его применение позволяет также достичь высокоэффективного умягчения водной жидкости.

    При использовании систем ультрафильтрации воды появляется возможность восстановления ценных компонентов, которые содержатся в сточных водах (иные методы для таких целей малоэффективны).

    Системы ультрафильтрации воды оснащены мембранами из достаточно прочного материала, что позволяет получать на выходе раствор высокого качества, обогащенный смесями. Здесь качество оборудования – принципиальное условие. Системы ультрафильтрации широко используют в целях очищения маломутных природных вод от органических соединений и микроорганизмов. При наличии серьезных загрязнений (барий, стронций и т. д.) следует использовать шунтиг фильтр.

    Системы ультрафильтрации находят применение в различных сферах. Рассматриваемый метод мембранной очистки является самым популярным. Так, его применяют после использования зернистых и волокнистых фильтров.

    Метод ультрафильтрации позволяет отделять раствор от волокон и твердых частиц там, где применяются сорбционные и ионообменные системы.

При помощи ультрафильтрации воды можно также очистить воду от масел. Для этого еще используется фильтр AG, что не всегда возможно, поскольку он работает при определенных температурах.

Как и любая техническая конструкция, система ультрафильтрации воды имеет свои недостатки. К их числу можно отнести скопление на мембранной поверхности гелиевой осадки, препятствующей дальнейшему фильтрованию, так как она имеет большую силу гидравлического сопротивления, чем используемое ультрафильтрационное полотно. Это явление называют концентрационной поляризацией. Место концентрации осадки определяется физико-химическими свойствами вещества.

Выделяют следующие способы решения данной проблемы:

    подавать раствор в пульсирующем режиме насосом-дозатором;

    подавать турбулентный поток;

    увеличить скорость потока рабочей жидкости.

Как вы видите, система ультрафильтрации воды имеет свои особенности, поэтому для ее выбора и установки лучше обратиться к профессионалам. На российском рынке присутствует немало компаний, которые занимаются разработкой систем водоочистки. Самостоятельно, без помощи профессионала, выбрать тот или иной вид фильтра для воды довольно сложно. И уж тем более не стоит пытаться смонтировать систему водоочистки самостоятельно, даже если вы прочитали несколько статей в Интернете и вам кажется, что вы во всем разобрались.

Надежнее обратиться в компанию по установке фильтров, которая предоставляет полный спектр услуг – консультацию специалиста, анализ воды из скважины или колодца, подбор подходящего оборудования, доставку и подключение системы. Кроме того, важно, чтобы компания предоставляла и сервисное обслуживание фильтров.

Наша компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

    подключить систему фильтрации самостоятельно;

    разобраться с процессом выбора фильтров для воды;

    подобрать сменные материалы;

    устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

    найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!

Майборода А. Б., кандидат химических наук, технический директор, ООО «Фазеркрафт»

Катраева И. В., кандидат технических наук, доцент кафедры экологии и природопользования и кафедры водоснабжения и водоотведения, Нижегородский государственный архитектурно-строительный университет (ННГАСУ)

Колпаков М. В., кандидат технических наук, технолог, ООО «Джурби ВотэТек»

В статье приведены результаты исследований по доочистке биологически очищенных сточных вод от фосфат-ионов и взвешенных веществ с помощью ультрафильтрации в сочетании с коагуляцией. Для тангенциальной ультрафильтрации в режиме «снаружи-внутрь» использовали половолоконный модуль российской компании ООО «Фазеркрафт» (г. Москва) с мембранами из поливинилиденфторида (ПВДФ). Изучено влияние на процесс фильтрации таких параметров, как трансмембранное давление и расход циркулирующего раствора. Исследования показали, что предлагаемая технология позволяет практически полностью очистить сточную воду от взвешенных веществ и снизить концентрацию фосфатов на 97%.

Ключевые слова : ультрафильтрация, доочистка сточных вод, удаление фосфатов, удаление взвешенных веществ

Поступление избыточного количества биогенных веществ (азота и фосфора) со сточными водами в поверхностные водные источники ведет к нарушению состояния водных экосистем и развитию процесса эвтрофикации водных объектов. Для удаления избыточного фосфора из сточных вод, прошедших глубокую биологическую очистку, наиболее часто используют физико-химический метод с применением различных минеральных коагулянтов . Осадок, содержащий фосфаты, отделяют осаждением и фильтрованием. Ультрафильтрация обеспечивает высокую степень очистки фильтрата и по этой причине все чаще используется в технологических схемах дополнительной обработки сточных вод .

В лаборатории ННГАСУ были проведены экспериментальные исследования по доочистке биологически очищенных бытовых сточных вод после вторичного отстойника с использованием технологии, которая включала реагентную обработку и ультрафильтрацию с концентрированием полученной суспензии. Использование ультрафильтрационных мембран позволяет практически полностью задержать взвешенные вещества и, как показали предыдущие испытания , снизить общее микробное число в очищаемой воде на 3-4 порядка за счет удержания бактерий, что, соответственно, позволяет значительно снизить расход обеззараживающего реагента. Схема и внешний вид лабораторной установки представлены на рис.1

Рис. 1. Внешний вид и схема лабораторной установки: 1-ёмкость для концентрирования; 2-рециркуляционный насос; 3-манометр; 4,9-цифровой измеритель потока; 5-мембранный модуль; 6-контроллер автоматизации; 7-перистальтический насос с реверсом; 8-датчик давления; 10-ёмкость фильтрата.

В качестве мембранного модуля применили российской компании ООО «Фазеркрафт» (г. Москва). Он представлял собой аппарат с цилиндрическим кожухом, внутри которого помещен пучок полых волокон, имеющих пористую стенку. С торцов аппарата пучок полых волокон был фиксирован эпоксидным компаундом. Технические характеристики мембранного модуля приведены в табл. 1.

Таблица 1. Технические характеристики мембранного модуля

В качестве коагулянта в сточную воду дозировали гидроксихлорид алюминия, доза которого в пересчете на Al2O3 составляла 20 мг/л. Для корректировки рН использовали известь в дозировке 2 мг CaO на 1 л очищаемой воды. Полученную суспензию циркуляционным вихревым насосом перекачивали по замкнутому контуру через кожух мембранного модуля, фильтрат отводился из внутренних каналов волокон. На линии фильтрата перистальтическим насосом создавали разрежение, за счет которого осуществлялась фильтрация. В ходе эксперимента трансмембранное давление фильтрации (ТМД ф) изменяли в интервале 0,05÷0,25 бар. После добавления коагулянта в емкость 1 суспензию концентрировали в 20 раз в течение суток, затем концентрат удаляли из емкости 1, заливали в нее новую порцию воды из вторичного отстойника и повторяли процесс очистки.

Работал в режиме тангенциальной фильтрации «снаружи-внутрь». Такая организация процесса была выбрана с целью обеспечения стабильной работы фильтра в условиях высокого содержания взвешенных веществ в очищаемой воде. Циркуляция суспензии через кожух аппарата позволяет избежать такого негативного явления, как закупоривание торцов волокон осадком ила, которое наблюдается при фильтрации «изнутри-наружу». Фильтрацию проводили круглосуточно в циклическом режиме (рис.2) под управлением контроллера автоматизации. Время фильтрования (tф) составляло 20 мин, время промывки (tп) фильтратом 1 мин, в ходе эксперимента трансмембранное давление промывки (ТМДп) на 0,05-0,1 бар превышало ТМДф, скорость тангенциального потока суспензии в кожухе аппарата (wт) меняли в пределах от 0,04 до 0,8 м/с. Указанному диапазону wт соответствует интервал значений критерия Рейнольдса от 68 до 1360, следовательно, течение жидкости в кожухе мембранного модуля происходило в ламинарном режиме.

Рис.2. Циклическая работа мембранного модуля (температура жидкости: +20 оС, wт = 0,14 м/с, ТМДф= 0,2 бар, tф=20 мин, ТМДп=0,3 бар, tп=1 мин)

Варьирование давления фильтрации показало, что поток фильтрата J возрастает с ростом трансмембранного давления от 0,05 до 0,2 бар (рис. 3). Дальнейшее увеличение значения ТМДф не приводит к росту J, что, вероятно, связано тем, что при увеличении трансмембранного давления происходит уплотнение осадка на мембране и возрастает его удельное гидравлическое сопротивление.

Рис. 3. Зависимость удельного потока фильтрата от трансмембранного давления фильтрования (температура жидкости +20 оС, wт = 0,47 м/с)

Увеличение концентрации твердой фазы в рециркулирующем растворе мало влияло на скорость фильтрации. Испытания показали, что концентрирование очищаемой суспензии с выходом 95 % жидкости в фильтрат приводит к падению производительности мембранного модуля только на 10 % (рис 4). Возможно, что негативное влияние сгущения суспензии компенсировалось за счет роста ее температуры: обычно за сутки (время обработки одной порции сточной воды) её температура возрастала примерно на 10 градусов (с +15 оС до +25 оС).

Рис. 4. Изменение потока фильтрата в течение суток после начала переработки очередной порции сточной воды (четвертые сутки ресурсных испытаний)

Варьирование рециркуляционного расхода показало, что при фиксированном трансмембранном давлении фильтрования (0,2 бар) расход фильтрата снижается с уменьшением скорости тангенциального потока (рис. 5). Это обусловлено увеличением толщины слоя осадка на мембране при снижении скорости потока, движущегося параллельно фильтрующей поверхности. Снижение скорости приводит к уменьшению затрат электроэнергии на циркуляцию жидкости, но одновременно увеличивается необходимая площадь мембран и капитальные затраты на изготовление установки. Как следует из рис. 5, уменьшение wт от 0,8 до 0,04 м/с (в 20 раз) приводит лишь к двукратному падению потока фильтрата. Это позволяет предположить, что оптимальная скорость тангенциального потока находится в области wт < 0,05 м/с.

Рис. 5. Зависимость удельного потока фильтрата от скорости тангенциального потока (температура жидкости: +20 оС, ТМДф= 0,2 бар)

Ресурсные испытания были проведены в течение 10 суток. Работа мембранного модуля была стабильной, что можно видеть из приведенного ниже рис. 6. При установленных параметрах удельный поток фильтрата J составил в среднем 65 л/ч∙м2.

Рис. 6. Работа мембранного модуля при следующих установленных параметрах: wт = 0,6 м/с, ТМДф= 0,2 бар, ТМДп= 0,25 бар.

Химический анализ очищенной воды проводился в сертифицированной лаборатории, данные по концентрации фосфатов в исходной и очищенной воде представлены на рис. 7, химический анализ по другим компонентам – в табл. 2.

Рис. 7. Концентрация фосфатов в воде, поступающей на доочистку, и в фильтрате

Таблица 2. Состав исходной сточной воды и фильтрата после мембранной очистки (третьи сутки ресурсных испытаний)

*до добавления коагулянта

Обеспечивает практически полное удаление из воды взвешенных веществ. Несмотря на высокую концентрацию коагулянта, не наблюдалось проскока алюминия в фильтрат: весь алюминий в форме гидроксида и других нерастворимых соединений задерживался мембраной. В отличие от алюминия железо удалялось только на 20 %. Поведение железа при доочистке сточных вод отличается от его поведения при ультрафильтрации природных вод (как поверхностных, так и подземных). В природных водах преобладает коллоидный гидроксид трехвалентного железа, который эффективно задерживается мембраной из ПВДФ. По-видимому, в сточных водах железо находится в виде соединений с органическими кислотами, и для его гидролиза требуется существенное увеличение рН.

Выводы:

  1. Как показали проведенные лабораторные испытания технология, сочетающая коагуляцию и ультрафильтрацию с использованием мембран из ПВДФ, может быть использована для эффективной доочистки сточных вод после биологической очистки. Задержание взвешенных веществ мембранным модулем составило > 93%, задержание фосфатов – 97 %. Концентрация алюминия в фильтрате не превышала 0,04 мг/л.
  2. Определено значение оптимального трансмембранного давления фильтрования (0,2 бар), которому соответствует максимальный поток фильтрата.
  3. Увеличение расхода рециркуляции (тангенциального потока) приводит к росту потока фильтрата, однако, исходя из технико-экономических соображений, наибольший интерес представляет область низких значений скорости тангенциального потока (меньше 0,05 м/с).
  4. Исследованный мембранный модуль работал стабильно в течение десяти дней с отбором 95% жидкости в фильтрат, при этом концентрирование примесей, подлежащих удалению (взвешенные вещества, фосфаты и др.) не оказывало существенного влияния на его производительность.

Список литературы:

  1. Гандурина Л.В., Буцева Л.В., Штондина B.C. Реагентный способ удаления соединений фосфора из сточных вод // Водоснабжение и санитарная техника. 2001. № 6.
  2. Дедков Ю.М., Коничев М.А., Кельина С.Ю. Методы доочистки сточных вод от фосфатов // Водоснабжение и санитарная техника. 2003, № 11.
  3. Загорский В.А., Данилович Д.А., Козлов М.Н., Мойжес О.В., Дайнеко Ф.А. Анализ промышленного применения технологий удаления фосфора из городских сточных вод // Водоснабжение и санитарная техника. 2004. № 5.
  4. Zhenga X., Plumeb S., Ernstc M., Crouea J.-P., Jekel M. In-line coagulation prior to UF of treated domestic wastewater – foulants removal, fouling control and phosphorus removal // Journal of Membrane Science. 2012. v. 403– 404.
  5. Майборода А.Б., Петров Д.В., Кичик В.А., Стариков Е.Н. // Мембраны и мембранные технологии. – 2013.

Способ, который набирает всё большую популярность в сфере борьбы с микроорганизмами. Эффективный и комплексный метод обеззараживания воды.

Ультрафильтрация для обеззараживания воды — это относительно новый способ, поскольку он известен уже давно. Просто другие способы — реагентное обеззараживание воды и некоторые физические методы обеззараживания воды являются более старыми. Но и менее совершенными — с некоторых точек зрения. Начнём с определения.

Ультрафильтрация — это способ очистки воды, одновременная безреагентная дезинфекция и осветление воды. При ультрафильтрации из воды удаляются нерастворимые примеси.

Принцип ультрафильтрации в общем

Принцип технологии ультрафильтрации состоит в том, что через полупроницаемый барьер под определённым давлением продавливается вода. Отверстия в барьере меньше по размерам, чем вирусы и прочие нерастворимые примеси. Соответственно, всё, что больше вирусов, отсеивается.

Кроме того, не следует забывать, что для обработки воды ультрафиолетовым излучением необходима специальная подготовка воды — которая может не проводиться при обеззараживании при помощи ультрафильтрации.

Степень фильтрации на установках ультрафильтрации бывает разной. Это диапазон от 0,01 микрона (десятитысячная миллиметра) до 0,001 микрона. Этот показатель необходимо выяснять при покупке. Так, если производитель говорит, что ультрафильтрация, которую он предлагает, удаляет все вирусы из воды, а размер пор составляет 0,01 микрон, то это неправда. Существуют вирусы и меньшего размера. Для полного удаления вирусов необходимы диаметры примерно 0,005 микрон.

То есть, ультрафильтрация — исключительно физический способ очистки воды, без постоянного применения химических реагентов.

Далее, если производитель говорит, что у него микрофильтрационная мембрана (например, трековая), и она удаляет вирусы и споры бактерий, то это неправда. Так как отверстия в микрофильтрационной мембране БОЛЬШЕ, чем споры бактерий и вирусы. Споры бактерий удаляются на ультрафильтрационной мембране. И полностью.

Таким образом, технология ультрафильтрации эффективнее обеззараживает воду, чем ультрафиолетовое излучение. Кроме того, для обработки воды с помощью ультрафильтрации нет необходимости серьёзно предподготавливать воду. Достаточно 30 микронного предварительного фильтра механической очистки воды.

Большой плюс технологии ультрафильтрации — это комплексная технология. И если химическое обеззараживание и ультрафиолет отвечают за обеззараживание и в какой-то мере слипание частиц, то технология ультрафильтрации кроме обеззараживания выполняет функцию осветления воды. То есть, до очистки вода была мутной и с бактериями, а после неё — прозрачная и продезинфецированная.

Существует две большие группы аппаратов ультрафильтрации.

Первая группа — питьевые системы , которые устанавливаются под кухонную мойку. Скорость очистки воды с помощью бытовой системы ультрафильтрации чаще всего составляет 2-3 литров в минуту, но бывает и больше. То есть, вода подготавливается в количестве, нужном для питья и приготовления пищи. Чаще всего питьевые системки на основе ультрафильтрции устроены по типу многоступенчатых систем обратного осмоса. Те же колбы, только вместо мембраны осмоса стоит мембрана ультрафильтрации. И нет накопительного бачка.

То есть, аппарат состоит не из голой ультрафильтрационной мембраны, а ещё и из нескольких ступеней предварительной очистки воды (чаще всего , ). То есть, бытовая система ультрафильтрации удаляет не только бактерии-вирусы, но и механические примеси, хлор, хлор-органические соединения.

Мембраны ультрафильтрации для питьевых систем могут быть керамическими и органическими. Чаще всего они организованы по типу полых волокон, внутри которых протекает грязная вода, а фильтрация проихсодит изнутри наружу. Керамические мембраны более долговечны. Однако, и у тех, и у других существует свой ресурс, после которого их нужно заменить. На показатель ресурса так же необходимо обращать внимание при выборе аппарата.

Вторая группа — системы ультрафильтрации с большой производительностью — от 500 литров в час. Эти системы предназначены для очистки воды на целый , коттедж , квартиру, ресторан, производство. Промышленные ультрафильтрационные установки могут организовываться как по типу полых волокон, так и в виде спиральной навивки.

Ультрафильтрация для дома, квартиры может использоваться не только дом или квартиру. В чистой продезинфицированной воде необходима для многих отраслей — для производства, для медицинских учреждений, для бассейнов и так далее. В любом из этих случаев используются практически одинаковые мембранные модули.

Важно, что основной рабочий элемент ультрафильтрационного аппарата — мембрана ультрафильтрации — нуждается в периодическом обеззараживании. Если она не керамическая. Бактерии любят материал, из которого сделана мембрана, и начинают его есть. Ну, и сначала мембрана превращается в микрофильтрационную, а затем в обычный механический фильтр.

Чтобы этого не происходило, необходимо регулярное обеззараживание мембраны. Частоту обеззараживания мембраны расчитывают специалисты на основе бактериального анализа воды. Керамическая мембрана может служить практически вечно, так как её не могут повредить бактерии, и она легко может отмываться агрессивными моющими средствами. Так что, если есть возможность, лучше использовать керамические мембраны ультрафильтрации.

Если нет, то нужно сравнивать между собой доступные органические мембраны. И выбирать наиболее производительную и наиболее долговечную мембрану. Даже если она дороже, выгоднее приобретать ту, которая служит дольше. Так экономические расходы получаются намного меньше.

Итак, ультрафильтрация — это экономичный и надёжный способ обеззараживания воды.

По материалам Выбор фильтров для воды : http://voda.blox.ua/2008/06/Kak-vybrat-filtr-dlya-vody-20.html

30 12 730 3050/1000/2400 ПВО-UF-40 40 16 920 3400/1000/2400 ПВО-UF-50 50 20 1110 4050/1300/2400 ПВО-UF-60 60 24 1300 4400/1300/2400 ПВО-UF-70 70 28 1520 4750/1300/2400 ПВО-UF-80 80 32 1710 5100/1300/2400 ПВО-UF-90 90 36 1910 5400/1300/2400

Модели оборудования

Назначение ультрафильтрации воды

Ультрафильтрация воды применяется для очистки жидкости от белков, высокомолекулярных органических соединений. Установки способны частично задерживать вирусы и бактерии. Выполняется очистка от тонкодисперсионных механических примесей.

Достаточно широкие возможности метода обуславливают его широкую востребованность в различных отраслях:

  • подготовка питающей воды в установках умягчения и обратного осмоса (котельные, бойлерные, телообменное оборудование);
  • очистка потока воды из открытых источников от бактерий и вирусов (подготовка питьевой и технологической воды);
  • очистка производственных стоков.

Финишная ступень доочистки после биологических очистных сооружений.

Состав установок ультрафильтрации серии ПВО-UF

Основное оборудование:

Комплектация

01

02

Механический фильтр предварительной механической очистки, 300 мкм;

Дозирование коагулянта

Статический смеситель;

Контактная емкость;

Ультрафильтрационные модули;

Система автоматической промывки мембран;

Cтанции дозирования реагентов CEB-промывки

Насос обратной промывки;

Защита насоса от работы в режиме сухого хода;

Гидрозаполненные манометры входного и рабочего давления;

Визуальные измерители потока очищенной и промывочной воды;

Система регулировки рабочих параметров;

Система задержки и плавного включения насоса;

Рабочие трубопроводы из PVC-U / полипропилена;

Рама из cтали с порошковой окраской;

Рама из нержавеющей cтали;

Мембранные клапаны для управления потоками;

Электрические задвижки с ручным дублированием для управления потоками;

Станция дозирования гипохлорита;

Панель для отбора проб воды;

Система автоматического управления установкой на базе контроллера;

Шкаф управления с контрольной панелью;

Частотное регулирование работы насосного оборудования;

Счетчик выработки пермеата;

Комплект датчиков (сухой ход, давление пермеата, перепад давления в модуле, поплавковый для емкости)

Опции (по запросу):

Комплектация

01

02

03

Расширенная система управления на базе промышленного контроллера;

Система предварительной подготовки исходной воды перед установкой ультрафильтрации;

Диспетчеризация процесса управления оборудования с выводом на компьютер инженера-технолога или оператора;

Емкости чистой и/или воды для промывки;

Насос подающий из нержавеющей стали;

Резервирование главного оборудование;

Система CIP-промывки;

Станция дозирования корректировки уровня pH;

Блок адсорбции;

Расширенная гарантия - 5 лет.

Конструкция модулей ультрафильтрации воды:

Принцип работы ультрафильтрации

Ультрафильтрация как класс относится к баромембранным процессам разделения. Действующей силой является перепад давления по разные стороны фильтровальной перегородки (мембраны).

Для предотвращения быстрого выхода оборудования из строя входная вода должна подвергаться предварительной очистке от мелких механических примесей. Эту функцию выполняет механический фильтр-“грязевик”.

При необходимости во входную линию добавляются вспомогательные реагенты - коагулянты и флокулянты. С их помощью возможно задержание частиц размеры которых меньше, чем диаметр пор мембраны. Добавление, в поток реагентов вызывает образование небольших хлопьев(флокул). Коллоидные и органические примеси, которые необходимо удалить закрепляются на поверхности полученных хлопьев.

Периодически, для восстановления работоспособности установки должна выполняться промывка фильтрующего модуля. Она осуществляется обратным током воды из сборника пермеата.

При образовании прочных химических осадков используются дополнительные реагенты (кислота, щелочь или гипохлорит натрия). Промывочный раствор проходит с внешней стороны волокон, внутрь вымывая в дренажную линию все накопившиеся загрязнения.

Конструкция установки ультрафильтрации

Основной элемент ультрафильтрационной установки - фильтрующий модуль. Установка ультрафильтрации, реализуемая компанией, модули выполнены по технологии Multibore®.

Поток воды пропускается через пучок многоканальных волокон. Волокна изготавливаются из полиэстерсульфона. Особенностью этогоматериала является наличие мелких структурных пор диаметром до 0,02мкм.Фактически стенки волокон представляют собой фильтр из полупроницаемой мембраны.

Компоновка модуля обеспечивает направление входного потока воды внутрь пучка волокон. Процесс фильтрации проходит изнутри наружу. Задерживаемые загрязнения остаются внутри каналов. Чистая вода (пермеат) через стенки выходит наружу и отводится из корпуса.

Состав ультрафильтрационной установки

В зависимости от условий эксплуатации, требований, предъявляемых к качеству очищенной воды и необходимому уровню автоматизации, состав основных структурных элементов может несколько различаться. В базовом, стандартном исполнении имеет следующий состав:

  • блок фильтрующих модулей;
  • реагентный блок (дозирование растворов коагулянта и флокулянта);
  • фильтр предварительной очистки;
  • узел автоматической промывки;
  • блок автоматического управления;
  • обвязка и трубопроводная арматура.

Дополнительно, по желанию заказчика, или в случае необходимости, комплектация установки может быть расширена. Дополнительно в состав вводятся:

  • емкость-накопитель,для сбора фильтрата;
  • нагнетающий насос на входной линии;
  • контрольно-измерительная аппаратура (количество и функциональное назначение приборов определяет степень автоматизации системы).

Преимущество ультрафильтрации

Производство в РФ.
. Рассрочка платежа.
. Возможность использования в комплексных системах очистки воды.
. Бесплатная доставка.
. Широкий модельный ряд.
. Длительный период эксплуатации.
. Гарантия 5 лет.
. Компактность.
. Возможность полной автоматизации.
. Модульная конструкция, возможность увеличения производительности.
. Низкое энергопотребление.
. Малый расход воды.
. 100%-ая очистка от взвешенных веществ.
. Удаление бактерий и вирусов из воды.
. Очистка воды с высокой мутностью и цветностью.
. Удаление высокомолекулярных органических соединений.
. Интеграция с существующими системами управления.
. Наивысший уровень очистки среди всех технологий осветления.
. Индивидуальные предварительные испытания (пилотные испытания).

Эффективность оборудования, предлагаемого компанией НПЦ «Промводочистка» подтверждается результатами работы большого количества реализованных и успешно работающих объектов на всей территории России.



Варианты технологических компоновок

Установки ультрафильтрации НПЦ «ПромВодОчистка» можно использовать в различных по сложности технологических процессах. В зависимости от качества входящей воды, компоновка этапов процесса очистки может быть выполнена в нескольких вариантах:

  • вариант 1:
    • грубая механическая очистка;
    • ультрафильтрация.

Применяется для очистки воды поступающей из скважины. Для входящего потока характерно высокое содержание взвешенных веществ при нахождении остальных параметров в пределах нормы.

  • вариант 2:
    • грубая механическая очистка;
    • механическая фильтрация сквозь слой инертного материала;
    • ультрафильтрация;
    • фильтрация через слой сорбционного материала.

Подобная схема применяется при обработке воды с высоким содержанием соединений железа, взвешенных веществ и повышенной мутности. Применяется для очистки воды, забираемой из открытых источников водозабора.

  • вариант 3
    • грубая механическая очистка;
    • ультрафильтрация;
    • умягчение воды.

Основная область применения - воды поверхностных источников, имеющие повышенное содержание солей магния и кальция.

  • вариант 4
    • грубая механическая очистка;
    • ультрафильтрация;
    • фильтрация через слой сорбционного материала;
    • обработка на установках обратного осмоса.

Основное назначение - обработка воды с повышенным содержанием ионов тяжелых металлов и превышениями по регламентируемым органолептическим показателям. Параллельно может быть выполнена очистка от взвешенных веществ, солей железа, кальция и магния.

Возможности использования установок ультрафильтрации не ограничиваются приведенными вариантами. При обращении в НПЦ «ПромВодОчистка» специалисты проектного отдела помогут подобрать весь технологический цикл очистки с применением мембранного оборудования для любых условий.

Ультрафильтрация - мембранный процесс, занимающий промежуточное место между микрофильтрацией и нанофильтрацией. Мембраны для ультрафильтрации имеют размер пор от 0,05 мкм (минимальных размер пор микрофильтрационных мембран) до 10 нм (максимальный размер пор нанофильтрационных мембрана).

Основная сфера применения ультрафильтрации выделение макромолекулярных веществ из растворов, при этом минимальный предел выделяемых растворенных веществ соответствует молекулярным массам в несколько тысяч Дальтон. Для отделения растворенных органических соединений с молекулярной массой от нескольких сотен до нескольких тысяч Дальтон (Да ) применяет мембранный процесс - нанофильтрация. Ультрафильтрационные мембраны являются пористыми, следовательно задержка частиц определяется в основном формой и размером и пор. Транспорт растворителя в данном случае прямо пропорционален приложенному давлению. При микро- и ультрафильтрации протекают одинаковые мембранные явления и производится одинаковый принцип разделения.

Однако ультрафильтрационные мембраны, в отличии от микрофильтрационных, имеют асимметричное строение. При этом гидродинамическое сопротивление определяется малой долей общей толщины мембраны для ультрафильтрации воды, тогда как при микрофильтрации, видимо, в гидродинамическое сопротивление дает вклад полная толщина мембраны. Толщина верхнего слоя ультрафильтрационной мембраны, как правило, равна не более 1 мкм.

Сечение ультрафильтрационной полисульфоновой мембраны под электронным микроскопом (х 10000)

Промышленное применение технологии ультрафильтрации - фракционирование макромолекул: крупные молекулы задерживаются мембраной, в то время как небольшие молекулы вместе с молекулами растворителя свободно проходят через мембрану. Для подбора ультрафильтрационных мембран, производители используют концепцию молекулярной массы "отсечения". Однако, кроме молекулярной массы на селективность ультрафильтрационных мембран значительное влияние оказывает явление концентрационной поляризации. К примеру, мембрана ультрафильтрации с отсечением 40 КДа полностью проницаема для цитохрома с массой молекулы 14,4 КДа . При этом в смеси цитохрома и альбумина (67КДа ) будет задерживается как альбумин, так и значительная часть цитохрома. Причина данного явления - концентрационная поляризация. Мембрана непроницаема для альбумина, который формирует на поверхности мембраны дополнительный слой, работающий как динамическая мембрана, задерживающая цитохрома. Различные растворенные вещества, такие как, линейные макромолекулы (полиэтиленгликоль, декстран и др.) или глобулярные белки существенно влияют на характеристики мембранного отсечения в процессе ультрафильтрации. Следовательно при подпоре ультрафильтрационных мембран для различных технологических процессов необходимо учитывать влияние концентрационной поляризации и распределение по молекулярным массам, характерное для большинства полимеров.

Ультрафильтрация широко применяется в промышленности и лабораториях для решения задач, связанных с разделением высокомолекулярных и низкомолекулярных соединений. Это очистка сточных вод промышленных предприятий, разделение и концентрирование продуктов в пищевом и молочном производстве, извлечение высокомолекулярных соединений (ВМС) в химической и текстильной промышленности , металлургии, в кожевенной промышленности, а также при производстве бумаги.

Для решения существующих проблем в очистке сточных вод от тяжелых металлов до низких концентраций ПДК создан ряд современных очистных сооружений, позволяющих вести промышленную очистку воды от взвешенных веществ, тяжелых металлов, нефтепродуктов, синтетических поверхностно-активных веществ (СПАВ), и других вредных веществ. Работа очистных сооружений основана на новых технология очистки воды: электрофлотации и ультрафильтрации.

Технологическая схема очистки сточных вод с применением ультрафильтрации

Выше представлена технологическая схема очистки сточных вод гальванического производства с последующим сбросом очищенной воды в систему канализации, либо подачей на установку обратного осмоса для обессоливания при создании оборотного водоснабжения предприятия. Данная система промышленной очистки воды рекомендуется для использования при проектировании новых очистных сооружений, либо реконструкции действующих систем очистки сточных вод для повышения их экологической безопасности и экономической эффективности.

Подобная технология очистки воды успешно реализована на нескольких очистных сооружениях гальванических производств в РФ. Технология предусматривает обработку кислотно-щелочных и хромсодержащих сточных вод в самостоятельных технологических цепочках. Технология обеспечивает глубокую очистку сточных воды от тяжелых металлов до уровня 0,005 мг/л, взвешенных веществ и нефтепродуктов до 0,01-0,05 мг/л. Рекомендуется для вновь строящихся очистных сооружений в регионах с жесткими нормами ПДК.

Установка ультрафильтрации на основе керамических производительностью 2,5 м 3 /час

Представленные технологии нашли применение в модульных, блочно-модульных и сборных установках. Разработаны различные модификации модульных установок в зависимости от состава сточных вод и климатических условий.

Модульные установки очистки воды производительностью от 0,1 до 50 м 3 /ч отвечают современным гигиеническим нормам и предназначены для промышленной очистки воды до требований ПДК рыбохозяйственных водоемов.

Ультрафильтрация - мембранный процесс, находящийся между микрофильтрацией и нанофильтрацией. Ультрафильтрационные мембраны имеют диаметр пор 0,005-0,2 мкм и позволяют задерживать высокодисперсные и коллоидные частицы, макромолекулы с нижним пределом молекулярной массы до нескольких тысяч, микроорганизмы и водоросли. Сравнительная таблица фильтрующих способностей различных мембранных процессов представлена (таблица подготовлена специалистами РХТУ им. Д.И. Менделеева).

Ультрафильтрация это продавливание жидкости через полупроницаемую мембрану, являющейся проницаемой для ионов и малых молекул и, в тоже время непроницаемой для коллоидных частиц и макромолекул. Ультрафильтрация растворов, содержащих молекулы ВМС (высокодисперсных систем), в отличие от ультрафильтрации золей, называют молекулярной фильтрацией. Ультрафильтрацию можно рассматривать как гиперфильтрацию, когда мембрана пропускает только молекулы растворителя или как диализ под давлением. В первом случае мембранный процесс обычно называют обратным осмосом.

Характеристики некоторых ультрафильтрационных мембран

Фирма-
изготовитель
(страна)

Марка мембраны

Материалы
мембраны

Рабочее
давление,
МПа

Проницаемость
G · 10 3 ,
м 3 /(м 2 · ч)

Задерживаемые вещества

Селективность,
%

молекулярная
масса

наименование

«Амикон»
(США)

Полиэлектролитный
комплекс

Раффиноза

Миоглобин

Декстран Т10

Альбумин

Химотрипсиноген

Альдолаза

Апоферритин

19S глобулин

«Миллипор»
(США)

«Дайцел»
(Япония)

Сополимеры
акрилонитрила

Мембраны для ультрафильтрации как правило изготавливаются в виде цилиндрических патронов или пластин из микропористых неорганических материалов, но чаще всего из синтетических полимеров (полиамиды, полисульфоны, полиэфирсульфоны , ПВДФ и пр.). Максимальный размер проходящих через мембрану молекул частиц (частиц) находится в пределах от нескольких мкм до сотых долей мкм. Селективность (разделяющая способность) мембран зависит от их физико-химических свойств и структуры, состава фильтруемой среды, давления, температуры и других факторов.

Ультрафильтрация в качестве метода очистки воды, концентрирования сточных вод, и/или фракционирования ВМС и многокомпонентных систем находит широкое применение в промышленном производстве. Ультрафильтры используют для очистки воды от ионных и не ионных загрязняющих веществ, органических растворителей, дизельного топлива и масел, разделения смесей белков (извлечение фосфолипидов из фосфатидного концентрата), производства витаминов и ферментов. Ультрафильтрацию применяют для микробиологического и дисперсионного анализа, а также анализа загрязнений воздушных масс и водных объектов бытовыми и промышленными отходами.

 

Возможно, будет полезно почитать: